
- •Количество вещества, молярная масса
- •Массовая доля элемента
- •Вывод химических формул. Расчеты по химическим формулам и уравнениям
- •Основные химические законы
- •Массовые и объемные доли выхода продукта реакции
- •Термохимические расчеты
- •Глава II. Периодический закон и периодическая система д.И.Менделеева на основе учения о строении атома
- •Строение атома
- •Периодический закон и периодическая система элементов д.И.Менделеева
- •8. Выберите элементы, высший оксид которых имеет формулу эо2:
- •Химическая связь. Классификация химических реакций.
- •3.6 Классификация химических реакций.
- •Классификация реакций по механизму расщепления внутримолекулярной связи.
- •Классификация реакций по виду переносимых частиц.
- •Классификация реакций по конечному результату.
- •Классификация реакций по признаку фазовой однородности реакционной системы
- •Классификация реакций по признаку обратимости химического процесса.
- •Классификация реакций по энергетическому признаку.
- •Глава III. Растворы. Растворимость вещества.
- •Массовая доля растворенного вещества
- •Глава IV.Скорость химических реакций. Химическое равновесие.
- •Скорость химических реакций
- •Химическое равновесие
- •Глава V.Электролитическая диссоциация. Химические реакции в растворах электролитов
- •Диссоциация электролитов
- •Степень диссоциации
- •Глава VI. Ионообменные реакции в растворах электролитов.
- •Глава VII. Кислотно-основные реакции в водных растворах.
- •Взаимодействие оксидов с водой
- •Реакции нейтрализации
- •Гидролиз солей
- •Глава VIII. Понятие о комплексных соединениях и реакциях комплексообразования.
- •Глава IX. Окислительно-восстановительные реакции.
- •Основные понятия.
- •Типы окислительно-восстановительных реакций.
- •Расстановка коэффициентов в уравнениях ов реакций.
- •Факторы, влияющие на протекание окислительно-восстановительных реакции.
- •Некоторые ов реакции
- •Раздел II. Основы неорганической химии Глава 1.Общая характеристика металлов
- •Глава II. Щелочные металлы (s-металлы)
- •Щелочные металлы (s-металлы).
- •Восстановительные свойства.
- •Кислотно-основные свойства.
- •Гидролиз солей.
- •Глава III. S-металлы iia группы
- •Бериллий, магний и щелочноземельные Ме.
- •Восстановительные свойства.
- •Кислотно-основные свойства оксидов и гидроксидов.
- •Жесткость воды.
- •Глава IV. P-металлы. Алюминий
- •Тесты, задания и задачи для самоподготовки
- •Глава V. D-металлы. Железо, цинк, медь, хром, марганец
- •Марганец
- •Тесты, задания и задачи для самоподготовки
- •Задания
- •Глава VI. Общие свойства неметаллов
- •Неметаллы
- •Водород
- •Химические свойства катиона водорода.
- •Химические свойства воды.
- •Задачи и упражнения для самостоятельной работы
- •Глава VII. Галогены
- •Физические свойства галогенов
- •Химические свойства галогенов
- •Хлороводород и соляная кислота
- •Соли соляной кислоты
- •Вопросы для контроля.
- •Задачи и упражнения для самостоятельной работы.
- •Глав VIII . Элементы главной подгруппы VI группы
- •Кислород
- •Соединения кислорода с водородом.
- •Вопросы для контроля
- •Упражнения и задачи для самостоятельной работы
- •Глава IX. Азот
- •Соединения азота с водородом.
- •Получение аммиака.
- •Кислородные соединения азота.
- •Азотистая кислота
- •Азотная кислота.
- •Получение азотной кислоты.
- •Вопросы для контроля
- •Задачи и упражнения для самостоятельной работы
- •Глава X. Фосфор
- •Соединения фосфора с водородом.
- •Соединения фосфора с кислородом.
- •Вопросы для контроля
- •Задачи и упражнения для самостоятельной работы
- •Глава хi. Углерод
- •Соединения углерода с водородом.
- •Соединения углерода с кислородом.
- •Вопросы для контроля
- •Задачи и упражнения для самостоятельной работы
- •Глава XII. Кремний
- •Соединения кремния с водородом.
- •Соединения кремния с кислородом.
- •Вопросы для контроля
- •Задачи и упражнения для самостоятельной работы
- •Ответы к задачам
- •Раздел I. Основы общей химии
- •Глава I. Простейшие стехиометрические расчеты
- •Список литературы Основная литература
- •Дополнительная литература
Периодический закон и периодическая система элементов д.И.Менделеева
В 1869 г великий русский ученый Д.И.Менделеев открыл закон периодичности свойств элементов и создал периодическую систему элементов.
С современных позиций химические свойства элементов определяются прежде всего электронной конфигурацией внешних энергетических уровней атома, и поэтому периодический закон формулируют следующим образом:
Свойства элементов и их соединений находятся в периодической зависимости от заряда атомных ядер элементов, что является следствием периодического повторения строения внешних электронных слоев атомов элементов при увеличении заряда их ядра.
Периодический закон Д.И Менделеев сформулировал на основе разработанной им в 1867 г периодической системы элементов, которая была представлена в виде таблицы.
В периодической таблице Д.И.Менделеева в группы объединены элементы, атомы которыхимеют одинаковое строение внешнего электронного слоя. Поэтому такие элементы имеют сходные физические и химические свойства. В группах А (главные подгруппы) находятся элементы, в атомах которых происходит заполнение электронами внешнего слоя, причем число электронов в этом слое равно номеру группы. В группах Б (побочные подгруппы) расположены элементы, в атомах которых электронами заполняется предпоследний слой, а во внешнем слое содержится обычно два электрона.
Период является последовательным рядом элементов, атомы которых имеют одинаковое число энергетических уровней, равное номеру данного периода. Периоды начинаются элементами, в атомах которых на внешнем энергетическом уровне находится один электрон на ns-подуровне. Заканчиваются периоды благородными газами, у атомов которых электронная структура внешнего уровня имеет энергетически выгодную, и поэтому устойчивую, конфигурацию ns2np6 (кроме гелия, элемента 1-го периода). Число элементов в периоде равно максимальному числу электронов на заполняемых подуровнях.
Структура периодической системы Менделеева связана с периодическим изменением электронной конфигурации атомов элементов, а место элемента в таблице содержит информацию о заряде ядра и строении электронной оболочки его атома. Зная местоположение элемента в периодической системе, можно сразу представить электронную конфигурацию внешних слоев его атомов, которые определяют в основном химические свойства этого элемента. Для этого используют следующие данные:
- порядковый номер элемента, определяющий число протонов в ядре и общее число электронов в атоме;
- номер периода, указывающий на число энергетических уровней и номер внешнего уровня в атоме данного элемента;
- номер и тип группы (А или Б), которые указывают, к какому типу элементов относится (s-, p-, d- или f- ) относится данный элемент и сколько электронов у него на заполняемом подуровне, а так же на внешнем и предпоследнем уровнях.
Следовательно, на основе периодической таблицы можно сразу определить электронную конфигурацию внешних и внутренних уровней атома любого элемента.
Атомы элементов, не имеющие на внешней оболочке устойчивой электронной структуры ns2np6, обладают при взаимодействии с атомами других элементов способность к перестройке своей внешней оболочки с тем, чтобы превратить ее в устойчивую. В зависимости от природы взаимодействующих элементов это достигается тремя путями: отдачей, присоединением или обобществлением электронов атомов этих элементов при образовании между ними химической связи.
Способность атома отдавать или присоединять электроны зависит от его радиуса и характеризуется величинами энергии ионизации, энергии сродства к электрону, а в составе молекулы – относительной электроотрицательностью атома. Периодичность электронных структур атомов приводит к периодическому изменению перечисленных свойств атомов элементов.
Важной характеристикой атома, определяющей его способность отдавать электрон, является энергия ионизации – это энергия, необходимая для отрыва электрона от атома элемента с образованием катиона.
В результате химических превращений атом элемента может присоединять электрон, превращаясь в анион. Энергия сродства к электроны (Еср) – это энергия присоединения электрона атомом элемента с образованием аниона.
Если атомы двух элементов сильно различаются значениями энергии ионизации и энергии сродства к электрону, то такие элементы будут легко реагировать друг с другом с образованием прочной связи. Использование этих характеристик ограничено тем, что они применимы только к изолированным атомам. Если атомы находятся в соединении, т.е. в молекуле, то для них используют относительную электроотрицательность – это величина, характеризующая относительную способность атома элемента притягивать к себе общие электроны в молекуле.
Тесты и задания для самоподготовки
Тесты
Выберите правильное утверждение:
У изотопов элемента одинаково:
А. число нейтронов Б. число протонов
В. число электронов Г. массовое число
Д. атомная масса Е. порядковый номер
2. Укажите число нейтронов в ядрах 4019К:
А. 19 Б. 40 В. 21 Г. 20
3. Укажите символ элемента, в атоме которого 20 нейтронов, 17 протонов и 17 электронов:
А. Са Б. Rb В. Cl Г. Ar
4. Выберите правильную последовательность уменьшения атомных радиусов S, Cl, Ar:
А. S > Cl > Ar Б. S > Ar > Cl В. Ar>Cl>S
5. Выберите ряд элементов, состоящих только из
а) d – элементов, б) р – элементов
А. Ge, Ti, Zn, Sn, Si Б. Si, As, S, Te, Kr
В. La, Ge, Zr V, Co Г. La, Zn, Zr, V, Co
6. Какие из электронных конфигураций соответствуют элементам, проявляющим максимальную степень окисления +5?
А. 3d54s2 Б. 3s23p5 В. 3s23p3 Г. 3d34s2 Д. 4s24p3 Е. 3d54s1
7. Выберите элементы, атомы которых имеют в основном состоянии два неспаренных электрона на 3d – подуровне:
Si, V, Ti, S, Ni, Co, Zr