
- •Количество вещества, молярная масса
- •Массовая доля элемента
- •Вывод химических формул. Расчеты по химическим формулам и уравнениям
- •Основные химические законы
- •Массовые и объемные доли выхода продукта реакции
- •Термохимические расчеты
- •Глава II. Периодический закон и периодическая система д.И.Менделеева на основе учения о строении атома
- •Строение атома
- •Периодический закон и периодическая система элементов д.И.Менделеева
- •8. Выберите элементы, высший оксид которых имеет формулу эо2:
- •Химическая связь. Классификация химических реакций.
- •3.6 Классификация химических реакций.
- •Классификация реакций по механизму расщепления внутримолекулярной связи.
- •Классификация реакций по виду переносимых частиц.
- •Классификация реакций по конечному результату.
- •Классификация реакций по признаку фазовой однородности реакционной системы
- •Классификация реакций по признаку обратимости химического процесса.
- •Классификация реакций по энергетическому признаку.
- •Глава III. Растворы. Растворимость вещества.
- •Массовая доля растворенного вещества
- •Глава IV.Скорость химических реакций. Химическое равновесие.
- •Скорость химических реакций
- •Химическое равновесие
- •Глава V.Электролитическая диссоциация. Химические реакции в растворах электролитов
- •Диссоциация электролитов
- •Степень диссоциации
- •Глава VI. Ионообменные реакции в растворах электролитов.
- •Глава VII. Кислотно-основные реакции в водных растворах.
- •Взаимодействие оксидов с водой
- •Реакции нейтрализации
- •Гидролиз солей
- •Глава VIII. Понятие о комплексных соединениях и реакциях комплексообразования.
- •Глава IX. Окислительно-восстановительные реакции.
- •Основные понятия.
- •Типы окислительно-восстановительных реакций.
- •Расстановка коэффициентов в уравнениях ов реакций.
- •Факторы, влияющие на протекание окислительно-восстановительных реакции.
- •Некоторые ов реакции
- •Раздел II. Основы неорганической химии Глава 1.Общая характеристика металлов
- •Глава II. Щелочные металлы (s-металлы)
- •Щелочные металлы (s-металлы).
- •Восстановительные свойства.
- •Кислотно-основные свойства.
- •Гидролиз солей.
- •Глава III. S-металлы iia группы
- •Бериллий, магний и щелочноземельные Ме.
- •Восстановительные свойства.
- •Кислотно-основные свойства оксидов и гидроксидов.
- •Жесткость воды.
- •Глава IV. P-металлы. Алюминий
- •Тесты, задания и задачи для самоподготовки
- •Глава V. D-металлы. Железо, цинк, медь, хром, марганец
- •Марганец
- •Тесты, задания и задачи для самоподготовки
- •Задания
- •Глава VI. Общие свойства неметаллов
- •Неметаллы
- •Водород
- •Химические свойства катиона водорода.
- •Химические свойства воды.
- •Задачи и упражнения для самостоятельной работы
- •Глава VII. Галогены
- •Физические свойства галогенов
- •Химические свойства галогенов
- •Хлороводород и соляная кислота
- •Соли соляной кислоты
- •Вопросы для контроля.
- •Задачи и упражнения для самостоятельной работы.
- •Глав VIII . Элементы главной подгруппы VI группы
- •Кислород
- •Соединения кислорода с водородом.
- •Вопросы для контроля
- •Упражнения и задачи для самостоятельной работы
- •Глава IX. Азот
- •Соединения азота с водородом.
- •Получение аммиака.
- •Кислородные соединения азота.
- •Азотистая кислота
- •Азотная кислота.
- •Получение азотной кислоты.
- •Вопросы для контроля
- •Задачи и упражнения для самостоятельной работы
- •Глава X. Фосфор
- •Соединения фосфора с водородом.
- •Соединения фосфора с кислородом.
- •Вопросы для контроля
- •Задачи и упражнения для самостоятельной работы
- •Глава хi. Углерод
- •Соединения углерода с водородом.
- •Соединения углерода с кислородом.
- •Вопросы для контроля
- •Задачи и упражнения для самостоятельной работы
- •Глава XII. Кремний
- •Соединения кремния с водородом.
- •Соединения кремния с кислородом.
- •Вопросы для контроля
- •Задачи и упражнения для самостоятельной работы
- •Ответы к задачам
- •Раздел I. Основы общей химии
- •Глава I. Простейшие стехиометрические расчеты
- •Список литературы Основная литература
- •Дополнительная литература
Глава VI. Общие свойства неметаллов
Стремление атомов каждого элемента к устойчивому электронному состоянию ближайшего благородного газа заставляет их при химических взаимодействиях отдавать свои внешние электроны партнеру или присоединять электроны от партнера. В отличие от атомов Ме, которые только отдают электроны, атомы неметаллов (неМе), как правило, могут и присоединять, и отдавать электроны в зависимости от свойств реагента, с которым они взаимодействуют.
Неметаллы
Элементы, атомы которых в химических реакциях обычно присоединяют электроны, но могут их и отдавать, из-за чего атомы неМе в соединениях могут иметь и отрицательную, и положительную степени окисления.
Только атомы фтора, вследствие самой высокой электроотрицательности, всегда присоединяют электроны от другого реагента и поэтому в соединениях всегда имеют отрицательную степень окисления. остальные неметаллы в соединениях могут иметь и отрицательную, и положительную степени окисления:
-1 -1 0 -3 0 +2 +4 +5
OF2, HF, F2, NH3, N2, NO, NO2, N2O5
-1 0 +1 +3 +5 +7
HCl, Cl2, HClO, HClO2, HClO3, HClO4
К неМе относятся: водород – s-элемент, и p-элементы IIIА - VIIА групп, расположенные вправо от границы, разделяющей Ме и неМе в периодической таблице. Атомы благородных газов (группа VIIIА) имеют устойчивую электронную конфигурацию внешнего слоя, что обеспечивает им химическую инертность и выделяют их в особую группу, которую нельзя отнести к Ме или неМе.
Максимальная отрицательная степень окисления неМе в соединениях равна номеру группы минус число 8. Эта степень окисления наблюдается в их соединениях с водородом или Ме. Максимальная положительная степень окисления неМе в соединениях обычно равна номеру группы и реализуется в высших оксидах или фторидах. Элементы четных групп, как правило, имеют четные степени окисления, поскольку у них четное число внешних электронов, а элементы нечетных групп – нечетные степени окисления.
Способность атома отдавать или присоединять электроны зависит от числа электронов на его внешнем слое, удаленности этого слоя от ядра и величины заряда ядра. Чем больше электронов во внешнем слое, тем выше способность атомов элементов присоединять электроны. В каждом периоде при движении слева направо атомный радиус элемента уменьшается, при этом увеличивается заряд ядра и число электронов во внешнем слое. Следовательно, способность атомов неметаллов присоединять электроны увеличивается, т.е. возрастают их окислительные свойства, а способность отдавать электроны, наоборот, уменьшается. Соответственно убывают восстановительные свойства.
В пределах одной группы при увеличении заряда ядра атомов элементов, т.е. сверху вниз, число электронов во внешнем слое не изменяется, но увеличивается радиус атома, заряд ядра и число внутренних электронов. В соответствии с этим при движении сверху вниз по группе способность атомов неМе присоединять электроны уменьшается (убывают их окислительные свойства), а отдавать – увеличивается (восстановительные свойства возрастают). Самым активным неМе является фтор.
Активные неМе с активными Ме образуют соединения с ионными связями. Химическая связь в соединениях, образуемых неМе друг с другом, всегда ковалентная. Она может быть одинарной или кратной, полярной и неполярной, трудно или легко поляризуемой. Поляризуемость связи зависит от смещаемости ее общей электронной пары под внешним воздействием. Чем больше различия в величинах электроотрицательности элементов, тем выше полярность связи.
В отличие от Ме, неМе образуют преимущественно кислотные оксиды: CO2, SiO2, N2O3, NO2, N2O5, P2O5, SO2, SO3. В то же время некоторые неМе образуют амфотерные оксиды:H2O, As2O3, а некоторые – несолеобразующие оксиды: CO, N2O, NO.
Водородные соединения неметаллов групп VIА и VIIА проявляют кислотные свойства, за исключением Н2О, которая является типичным и идеально сбалансированным амфолитом. Сила этих бинарных водородных кислот возрастает вниз по группам из-за повышения поляризуемости их молекул, что связано с увеличением атомного радиуса и заряда ядра соответствующих элементов. Для водородных соединений неметаллов VА группы характерны амфотерные свойства с преобладанием основных свойств. Основность этих соединений обусловлена наличием у неМе достаточно подвижной неподеленной электронной пары. Причем ее подвижность и, следовательно, основность соединения возрастают от AsH3 к NH3.
В то же время NH3, PH3 и особенно AsH3 одновременно проявляют свойства кислот, образуя с Ме соли: нитриды (Li3N), фосфиды (Ca3P2) и арсениды (Na3As, Zn3As2). Водородные соединения углерода (СН4) и кремния (SiH4) практически не проявляют ни кислотных, ни основных свойств.
Неметаллы отличаются от Ме и физическими свойствами. Большинство неметаллов не проводят электрический ток и имеют низкую теплопроводность. При обычных условиях простые вещества неметаллов: водород Н2, азот N2, кислород О2, фтор F2, хлор Cl2 – являются газами, бром Br2 – жидкостью, остальные неМе – твердыми веществами.
Многие неМе имеют разные аллотропные формы, отличающиеся друг от друга молекулярной структурой. Молекула обычного кислорода О2 – двухатомна, а озона О3 – трехатомна. Твердые неМе часто имеют несколько аллотропных форм, различающихся типом кристаллической решетки и физическими свойствами. Например, сера имеет три формы: ромбическую, моноклинную и пластическую (каучукоподобную); фосфор – три: белый, красный и черный; углерод – четыре: графит, алмаз, фуллерен и карбин. Химические свойства аллотропных модификаций одного и того же элемента подобны, но отличаю интенсивностью проявления этих свойств.