
- •Количество вещества, молярная масса
- •Массовая доля элемента
- •Вывод химических формул. Расчеты по химическим формулам и уравнениям
- •Основные химические законы
- •Массовые и объемные доли выхода продукта реакции
- •Термохимические расчеты
- •Глава II. Периодический закон и периодическая система д.И.Менделеева на основе учения о строении атома
- •Строение атома
- •Периодический закон и периодическая система элементов д.И.Менделеева
- •8. Выберите элементы, высший оксид которых имеет формулу эо2:
- •Химическая связь. Классификация химических реакций.
- •3.6 Классификация химических реакций.
- •Классификация реакций по механизму расщепления внутримолекулярной связи.
- •Классификация реакций по виду переносимых частиц.
- •Классификация реакций по конечному результату.
- •Классификация реакций по признаку фазовой однородности реакционной системы
- •Классификация реакций по признаку обратимости химического процесса.
- •Классификация реакций по энергетическому признаку.
- •Глава III. Растворы. Растворимость вещества.
- •Массовая доля растворенного вещества
- •Глава IV.Скорость химических реакций. Химическое равновесие.
- •Скорость химических реакций
- •Химическое равновесие
- •Глава V.Электролитическая диссоциация. Химические реакции в растворах электролитов
- •Диссоциация электролитов
- •Степень диссоциации
- •Глава VI. Ионообменные реакции в растворах электролитов.
- •Глава VII. Кислотно-основные реакции в водных растворах.
- •Взаимодействие оксидов с водой
- •Реакции нейтрализации
- •Гидролиз солей
- •Глава VIII. Понятие о комплексных соединениях и реакциях комплексообразования.
- •Глава IX. Окислительно-восстановительные реакции.
- •Основные понятия.
- •Типы окислительно-восстановительных реакций.
- •Расстановка коэффициентов в уравнениях ов реакций.
- •Факторы, влияющие на протекание окислительно-восстановительных реакции.
- •Некоторые ов реакции
- •Раздел II. Основы неорганической химии Глава 1.Общая характеристика металлов
- •Глава II. Щелочные металлы (s-металлы)
- •Щелочные металлы (s-металлы).
- •Восстановительные свойства.
- •Кислотно-основные свойства.
- •Гидролиз солей.
- •Глава III. S-металлы iia группы
- •Бериллий, магний и щелочноземельные Ме.
- •Восстановительные свойства.
- •Кислотно-основные свойства оксидов и гидроксидов.
- •Жесткость воды.
- •Глава IV. P-металлы. Алюминий
- •Тесты, задания и задачи для самоподготовки
- •Глава V. D-металлы. Железо, цинк, медь, хром, марганец
- •Марганец
- •Тесты, задания и задачи для самоподготовки
- •Задания
- •Глава VI. Общие свойства неметаллов
- •Неметаллы
- •Водород
- •Химические свойства катиона водорода.
- •Химические свойства воды.
- •Задачи и упражнения для самостоятельной работы
- •Глава VII. Галогены
- •Физические свойства галогенов
- •Химические свойства галогенов
- •Хлороводород и соляная кислота
- •Соли соляной кислоты
- •Вопросы для контроля.
- •Задачи и упражнения для самостоятельной работы.
- •Глав VIII . Элементы главной подгруппы VI группы
- •Кислород
- •Соединения кислорода с водородом.
- •Вопросы для контроля
- •Упражнения и задачи для самостоятельной работы
- •Глава IX. Азот
- •Соединения азота с водородом.
- •Получение аммиака.
- •Кислородные соединения азота.
- •Азотистая кислота
- •Азотная кислота.
- •Получение азотной кислоты.
- •Вопросы для контроля
- •Задачи и упражнения для самостоятельной работы
- •Глава X. Фосфор
- •Соединения фосфора с водородом.
- •Соединения фосфора с кислородом.
- •Вопросы для контроля
- •Задачи и упражнения для самостоятельной работы
- •Глава хi. Углерод
- •Соединения углерода с водородом.
- •Соединения углерода с кислородом.
- •Вопросы для контроля
- •Задачи и упражнения для самостоятельной работы
- •Глава XII. Кремний
- •Соединения кремния с водородом.
- •Соединения кремния с кислородом.
- •Вопросы для контроля
- •Задачи и упражнения для самостоятельной работы
- •Ответы к задачам
- •Раздел I. Основы общей химии
- •Глава I. Простейшие стехиометрические расчеты
- •Список литературы Основная литература
- •Дополнительная литература
Химическое равновесие
Химические реакции по степени завершенности химического процесса классифицируются на необратимые и обратимые.
Необратимыми называются реакции, которые протекают только в одном направлении до полного израсходования одного из реагирующих веществ.
Необратимыми являются реакции, ведущие к образованию газообразных, нерастворимых или малодиссоциирующих соединений. В этих случаях происходит или самопроизвольное удаление продукта (газ, осадок) из реакционной среды или реагирующие частицы удаляются за счет их прочного связывания в малодиссоциирующее соединение.
Обратимыми называются реакции, которые одновременно протекают в прямом и обратном направлениях, вследствие чего в реакционной среде всегда присутствуют и продукты, и реагенты.
При уменьшении скорости одной реакции происходит увеличение скорости обратной реакции до тех пор, пока скорости обеих реакций не станут равными. Следовательно, при обратимых реакциях в реакционной системе без каких-либо внешних воздействий самопроизвольно устанавливается устойчивое равновесное состояние, характеризующееся равенством скоростей прямой и обратной реакций.
Химическим равновесием называется такое состояние обратимого процесса, при котором скорости прямой и обратной реакций равны. В результате чего в реакционной системе устанавливается постоянство концентраций исходных и конечных веществ.
Состояние химического равновесия имеет следующие особенности:
Динамический характер химического равновесия – прямая и обратная реакции не прекращаются, а протекают с равными скоростями.
Постоянство состояния химического равновесия во времени – при неизменных внешних условиях состав равновесной системы не меняется.
Подвижность равновесия – при изменении внешних условий происходит смещение химического равновесия, т.е. установление новых равновесных концентраций всех реагирующих веществ.
Возможность подхода к состоянию равновесия с двух сторон – как со стороны исходных веществ, так и со стороны продуктов реакции.
Количественной характеристикой состояния химического равновесия в системе является константа химического равновесия обратимого процесса, которая равна отношению произведения равновесных концентраций конечных продуктов к произведению равновесных концентраций исходных веществ, возведенных в степени, равные стехиометрическим коэффициентам при формулах соответствующих веществ в уравнении химической реакции.
Так формулируется закон действующих масс для обратимых реакций в гомогенных системах.
Смещение химического равновесия. Состояние химического равновесия при неизменных условиях может сохраняться сколь угодно долго. Однако, изменяя внешние условия протекания реакций, химическое равновесие можно сместить в сторону прямой или обратной реакции. Направление смещения определяется принципом Ле Шателье:
Если изменить одно из условий, при которых система находится в состоянии химического равновесия, например температуру, давление или концентрацию любого из участвующих в реакции веществ, то равновесии сместится в направлении той реакции, которая противодействует произведенному изменению.
Рассмотрим влияние каждого из факторов – концентрации, давления и температуры на смещение равновесия на примере реакции синтеза аммиака:
N2 + 3H2 ↔ 2NH3 + Q
Влияние концентрации. Если повысить концентрацию азота или водорода, то, согласно принципу Ле Шателье, равновесие сместится вправо, в сторону прямой реакции, т.к. за счет ускорения прямой реакции концентрации азота и водорода будут уменьшаться. Если повысить концентрацию аммиака, то равновесие сместится влево, в сторону обратной реакции, т.к. при этом ускорится его разложение. В обоих случаях будут ускоряться процессы, которые противодействуют произведенному изменению.
При увеличении концентрации исходных веществ равновесие смещается в сторону образования продуктов реакции; при увеличении концентрации продуктов реакции равновесие смещается в сторону образования исходных веществ.
Влияние давления. Давление оказывает влияние на состояние равновесия только тех процессов, которые протекают с изменением давления, т.е. с изменением числа молекул газообразных веществ. Если реакция протекает с увеличением числа молекул газа, то она сопровождается повышением давления. Отсюда следует:
При увеличении давления равновесие всегда смещается в сторону уменьшения числа молекул газообразных веществ, а при уменьшении давления равновесие смещается в сторону возрастания числа молекул газообразных веществ. Так, если при синтезе аммиака повысить давление, то равновесие сместится вправо, в сторону прямой реакции, поскольку прямая реакция способствует уменьшению давления в системе (уменьшается число молекул, следовательно, уменьшается давление). Понижение давления, наоборот, вызовет смещение равновесия влево, в сторону той реакции, в результате которой давление в системе увеличивается.
Влияние температуры. Изменение температуры оказывает влияние на состояние равновесия только тех процессов, которые протекают с выделением или поглощением тепла.
При повышении температуры равновесие всегда смещается в сторону эндотермической реакции, при понижении температуры – в сторону экзотермической реакции. При синтезе аммиака, который сопровождается выделением тепла, повышение температуры сместит равновесие влево, в сторону обратной реакции, поскольку обратная реакция протекает с поглощением тепла, противодействуя повышению температуры.
Влияние катализатора. Катализатор снижает энергию активации как прямой, так и обратной реакции, что приводит к одинаковому увеличению скорости и прямой, и обратной реакции. Введение катализатора ускоряет достижение состояния равновесия, но не смещает его положения.
Тесты
Выберите уравнение реакции, для которой кинетическое уравнение (выражение закона действующих масс) имеет вид: ʋ = k[А][В]2.
А. А(г) + 2В(тв) = АВ2(г) В. А(г) + 2В(г) = АВ2(г)
Б. А(тв) + 2В(г) = АВ2(г) Г. А(г) + В2(г) = АВ2(г)
Начальные концентрации веществ А и В, участвующих в гомогенной реакции А + 2В → С, были соответственно равны 2 и 3 моль/л. какой будет концентрация вещества В, если прореагирует 50% вещества А?
А. не изменится Б. 1 моль/л В. 1,5 моль/л Г. 2 моль/л
Во сколько раз изменится скорость гомогенной реакции А(г) + 2В(г) → С(г), если в системе увеличить давление в 3 раза?
А. увеличится в 27 раз Г. увеличится в 18 раз
Б. увеличится в 3 раз Д. уменьшится в 3 раза
В. Увеличится в 6 раз Е. уменьшится в 27 раз
Какая из реакций протекает с большей скоростью?
а) А. 2NaOH(тв) + CO2(г) ↔ Na2CO3(тв) + H2O(ж)
Б. 2NaOH(р) + CO2(р) ↔ Na2CO3(р) + H2O(ж)
б) А. Zn (порошок) + 2HCl(р) ↔ ZnCl2(p) + H2↑
Б. Zn(кусок) + 2НСl(газ) ↔ ZnCl2(p) + H2↑
Температурный коэффициент скорости некоторой реакции равен 3. Во сколько раз увеличится скорость реакции при изменении температуры от 300 до 600С ?
А. 3 Б. 6 В. 9 Г. 27
Через некоторое время после начала реакции А + В → С скорость реакции при постоянной температуре уменьшилась в 100 раз. Как изменились концентрации веществ А и В за это время?
А. уменьшились в 10 раз Б. не изменились
Какое из приведенных выражений является константой равновесия
H2S(г) ↔ H2(г) + S(тв)?
А.[H2S] Б.[H2][S] В.[H2] Г.[H2S]
[H2][S] [H2S] [H2S] [H2]
Выберите процесс, равновесие в котором смещается влево как при увеличении температуры, так и при увеличении давления:
А.NH4Cl(тв) ↔ NH3(г) + HCl(г) – Q
Б. 2CO2(г) ↔ 2CO(г) + O2(г) - Q
B.CO(г) +H2O(г) ↔ CO2(г) + H2(г) + Q
Г. 2NOCl(г) ↔ 2NO(г) + Cl2(г) + Q
Выберите системы, положение равновесия в которых не зависит от давления:
А. 2NO(г) + Cl2(г) ↔ 2NOCl(г)
Б. СH3COOC2H5(р) + H2O(ж) ↔ CH3COOH(p) + C2H5OH(p)
B. CaCO3(тв) ↔ CaO(тв) + CO2(г)
Укажите, как изменится содержание аммиака в реакционной системе N2(г) + 3H2 ↔ 2NH3(г) + Q при увеличении температуры.
А. не изменится Б. увеличится В. Уменьшится
Как изменится скорость реакции 2NO + O2 → 2NO2, если объем реакционного сосуда увеличить в 2 раза:
А. уменьшится в 4 раза В. возрастет в 4 раза
Б. уменьшится в 8 раз Г. возрастет в 8 раз
Чем объясняется повышение скорости реакции при введении в систему катализатора:
А. уменьшением энергии активации;
Б. увеличением средней кинетической энергии молекул;
В. возрастанием числа столкновений;
Г. ростом числа активных молекул.