- •Оглавление
- •Глава 1 16
- •Глава 2 химическая связь 33
- •Глава 3 54
- •Глава 4 82
- •Глава 5 110
- •Глава 6 141
- •Глава 7 173
- •Глава 8 196
- •Глава 9 234
- •Глава 10 комплексные соединения и их свойства 272
- •Глава 11 297
- •Глава 12 316
- •Глава 13 377
- •Глава 14 400
- •Глава 15 основные понятия органической химии 419
- •Глава 16 445
- •Глава 17 474
- •Глава 18 499
- •Глава 19 518
- •Глава 20 562
- •Глава 21 аминокислоты, пептиды и белки 578
- •Глава 22 620
- •Глава 23 651
- •Глава 24 692
- •Глава 25 709
- •Глава 26 740
- •Глава 27 771
- •От автора
- •Глава 1 строение атома, периодический закон и периодическая система элементов д. И. Менделеева
- •1.1. Строение атома
- •1.1.1. Квантовые числа
- •1.1.2. Принципы заполнения атомных орбиталей электронами
- •1.2. Периодический закон и периодическая система элементов д. И. Менделеева
- •1.3. Основные характеристики атомов элементов
- •1.3.1. Радиус атома
- •1.3.2. Энергия ионизации
- •1.3.3. Энергия сродства к электрону
- •1.3.4. Относительная электроотрицательность
- •Глава 2 химическая связь
- •2.1. Ковалентная связь
- •2.1.1. И молекулярные орбитали
- •2.1.2. Механизмы возникновения ковалентной связи
- •2.1.3. Особенности ковалентной связи
- •2.2. Ионная связь
- •2.3. Металлическая связь
- •Глава 3 межмолекулярные взаимодействия и агрегатное состояние вещества
- •3.1. Межмолекулярные взаимодействия
- •3.2. Агрегатное состояние вещества
- •3.2.1. Твердое состояние
- •3.2.2. Жидкое состояние
- •3.2.3. Жидкокристаллическое состояние
- •3.2.4. Паро- и газообразное состояния
- •Глава 4 основы химической термодинамики и биоэнергетики
- •4.1. Основные понятия термодинамики
- •4.2. Первый закон термодинамики
- •4.3. Понятие о самопроизвольных процессах.
- •4.4. Второй закон термодинамики. Энергия гиббса
- •4.5. Принцип энергетического сопряжения биохимических реакций
- •Г лава 5 основы кинетики биохимических реакций и химического равновесия
- •5.1. Основные понятия и терминология раздела
- •5.2. Факторы, влияющие на скорость гомогенных реакций
- •5.2.1. Влияние природы реагирующих веществ
- •5.2.2. Влияние концентрации реагентов.
- •5.2.3. Влияние температуры. Энергия активации
- •5.2.4. Влияние катализатора
- •5.3. Особенности кинетики гетерогенных реакций
- •5.4. Особенности кинетики цепных реакций
- •5.5. Химическое равновесие
- •5.5.1. Смещение химического равновесия
- •5.6. Ферментативный катализ и его особенности
- •5.7. Автоколебательные биохимические процессы
- •Г лава 6 растворы и их коллигативные свойства
- •6.1. Вода как растворитель и ее роль в жизнедеятельности организма
- •6.2. Термодинамика процесса растворения
- •6.З. Способы выражения концентрации растворов
- •6.4. Коллигативные свойства растворов
- •6.4.1. Диффузия
- •6.4.2. Осмос. Осмотическое и онкотическое давление
- •6.4.3. Давление насыщенного пара над раствором
- •6.4.4. Температура кипения и замерзания раствора
- •Глава 7 растворы электролитов и ионные равновесия
- •7.1. Электролитическая диссоциация
- •7.2. Равновесие в растворах слабых электролитов
- •7.2.1. Влияние общего иона и противоиона на равновесие
- •7.2.2. Взаимосвязь константы диссоциации и степени диссоциации
- •7.3. Особенности растворов сильных электролитов. Ионная сила раствора
- •7.4. Электролитическая диссоциация и ионное произведение воды
- •7.5. Водородный и гидроксильный показатели (рН и рОн)
- •7.6. Физико-химические основы водно-электролитного баланса в организме
- •Г лава 8 теория кислот и оснований и протолитические равновесия
- •8.1. Протолитическая теория кислот и оснований
- •8.2. Кислотно-основные свойства а-аминокислот
- •8.3. Важнейшие кислотно-основные реакции
- •8.3.1. Гидролиз солей
- •8.3.2. Реакции нейтрализации
- •8.3.3. Общая, активная и потенциальная кислотность растворов
- •8.4. Протолитический баланс. Буферные растворы и их свойства
- •8.5. Буферные системы организма, их взаимодействие, явления ацидоза и алкалоза
- •9.1. Основные понятия и факторы, влияющие на протекание окислительно-восстановительных реакций
- •9.2. Направление протекания окислительно-восстановительных реакций
- •9.3. Особенности биохимических окислительно-восстановительных процессов в организмах
- •9.3.1. Степень окисления углерода в органических соединениях
- •9.3.2. Биохимические реакции внутри- и межмолекулярной окислительно-восстановительной дисмутации за счет атомов углерода
- •9.3.3. Окислительно-восстановительные превращения кофакторов и коферментов оксидоредуктаз
- •9.3.4. Электронотранспортные цепи
- •9.3.5. Дегидрогеназное окисление-восстановление
- •9.3.6. Окислительное фосфорилирование
- •9.3.7. Фотофосфорилирование
- •9.3.8. Оксигеназное окисление-восстановление
- •9.3.9. Свободнорадикальное окисление и антиоксидантная система организма
- •9.4. Использование окислителей и восстановителей в медико-санитарной практике
- •Глава 10 комплексные соединения и их свойства
- •10.1. Основные понятия и терминология
- •10.2. Химическая связь в комплексных соединениях и особенности их строения
- •10.3. Химические свойства комплексных соединений
- •10.4. Медико-биологическая роль комплексных соединений
- •10.5. Металлолигандный баланс и его нарушения
- •10.6. Комплексонометрия
- •Глава 11 гетерогенные процессы и равновесия в растворах
- •11.1. Основные понятия и теоретические основы
- •11.2. Гетерогенные равновесия в растворах, связанные с процессом кристаллизации
- •11.3. Гетерогенные равновесия в растворах, связанные с процессом расслоения
- •11.4. Гетерогенные равновесия в живых системах
- •Глава 12 химия элементов-органогенов
- •12.2. Строение, химические свойства и роль элементов-органогенов и их соединений в растительном и животном мире
- •12.2.1. Водород и его соединения
- •12.2.2. Углерод и его соединения
- •12.2.3. Азот и его соединения
- •12.2.4. Фосфор и его соединения
- •12.2.5. Кислород и его соединения
- •12.2.6. Сера и ее соединения
- •12.3. Строение и химические свойства галогенов и их соединений
- •Глава 13 химия ионов металлов жизни и их роль в растительном и животном мире
- •13.1. Химия ионов s-металлов в организме
- •13.1.1. Натрий и калий
- •13.1.2. Магний и кальций
- •13.2. Химия ионов d-металлов в организме
- •13.2.1. Марганец
- •13.2.2. Железо и кобальт
- •13.2.3. Медь
- •13.2.4. Цинк
- •13.2.5. Молибден
- •Глава 14 химия и анализ загрязнений окружающей среды
- •14.1. Химия загрязнений атмосферы
- •14.1.1. Токсический смог
- •14.1.2. Фотохимический смог
- •14.1.3. Кислотные дожди
- •14.1.4. Загрязнение атмосферы другими токсикантами
- •14.1.5. Разрушение озонового слоя
- •14.2. Методы анализа токсикантов и методы снижения их поступления в атмосферу
- •14.3. Загрязнение гидросферы. Понятие об общих показателях, характеризующих природные и сточные воды
- •Глава 15 основные понятия органической химии
- •15.1. Основы классификации и номенклатуры органических соединений
- •15.2. Пространственная структура биоорганических молекул и виды изомерии
- •15.3. Понятие о взаимном влиянии атомов в молекуле и электронные эффекты
- •15.4. Классификация органических реакций и их компонентов
- •Г лава 16 алифатические и ароматические углеводороды
- •16.1. Строение и реакционная способность алканов
- •16.2. Строение и реакционная способность ненасыщенных углеводородов: алкенов и диенов
- •16.3. Ароматические углеводороды (арены)
- •Глава 17 спирты, фенолы, простые эфиры, тиолы и сульфиды
- •17.2. Физико-химические свойства спиртов и фенолов
- •17.3. Химические свойства спиртов
- •17.4. Химические свойства фенолов
- •17.5. Простые эфиры
- •17.6. Тиолы и сульфиды
- •Г лава 18 альдегиды, кетоны и их производные
- •18.1. Строение, номенклатура и физико-химические свойства альдегидов и кетонов
- •18.2. Химические свойства альдегидов и кетонов
- •18.2.1. Кислотно-основные свойства
- •18.2.2. Электрофильно-нуклеофильные свойства
- •18.2.3. Окислительно-восстановительные свойства
- •18.2.4. Комплексообразующие свойства
- •18.3. Альдегиды и кетоны в окружающей среде
- •Г лава 19 карбоновые кислоты и их функциональные производные
- •19.2. Химические свойства предельных кислот и их производных
- •19.2.1. Кислотно-основные свойства
- •19.2.2. Карбоновые кислоты как ацилирующие реагенты
- •19.2.3. Производные карбоновых кислот, их свойства и взаимные превращения
- •19.2.4. Окислительно-восстановительные свойства карбоновых кислот и их производных
- •19.3. Особенности свойств замещенных карбоновых кислот и их производных
- •19.3.1. Дикарбоновые кислоты
- •19.3.2. Гидроксикарбоновые кислоты
- •19.3.3. Оксокарбоновые кислоты
- •19.3.4. Ненасыщенные карбоновые кислоты
- •19.4. Основные реакции метаболизма карбоновых кислот
- •19.4.1. Биосинтез жирных кислот
- •1 9.4.2. Биологическое окисление жирных кислот
- •19.4.3. Реакции цикла кребса
- •19.5. Кислоты ароматического ряда и их производные как лекарственные средства
- •Г лава 20 Липиды
- •20.1. Жиры и воски
- •20.2. Омыляемые сложные липиды
- •20.3. Неомыляемые липиды - низкомолекулярные биорегуляторы
- •Глава 21 аминокислоты, пептиды и белки
- •21.1. Строение, классификация и физико-химические свойства а-аминокислот
- •21.2. Химические свойства а-аминокислот
- •21.2.1. Кислотно-основные свойства и прототропная таутомерия
- •21.2.2. К0мплекс00бразующие свойства
- •21.2.3. Электрофильно-нуклеофильные свойства
- •21.2.4. Окислительно-восстановительные свойства
- •21.3. Структура и свойства пептидов
- •21.4. Структура и свойства белков
- •Глава 22 углеводы и полисахариды
- •22.1. Строение, изомерия и свойства моносахаридов
- •22.1.1. Химические свойства моносахаридов и их производных
- •22.1.2. Катаболизм глюкозы - гликолиз
- •22.3. Полисахариды, их структура и свойства
- •22.3.1. Гомополисахариды
- •22.3.2. Гетерополисахариды, протеогликаны, гликопротеины
- •Г лава 23 биологически важные азотсодержащие соединения
- •23.1. Электронные состояния атома азота в его соединениях и свойства этих соединений
- •23.2. Роль аммиака для живых организмов и пути его обезвреживания. Цикл мочевины и ее свойства
- •23.3. Азотсодержащие ароматические гетероциклические соединения
- •23.4. Нуклеозиды, нуклеотиды и нуклеиновые кислоты, их структура и свойства
- •Г лава 24 электрохимия. Электрическая проводимость растворов электролитов
- •24.1. Электрическая подвижность ионов в растворе
- •24.2. Удельная электрическая проводимость растворов электролитов
- •24.3. Молярная электрическая проводимость растворов электролитов
- •24.4. Закон независимого движения ионов в разбавленных растворах (закон кольрауша)
- •24.5. Кондуктометрические методы анализа
- •24.5.1. Кондуктометрическое титрование
- •24.6. Электрическая проводимость биологических объектов в норме и патологии
- •Г лава 25 межфазные электрические потенциалы, гальванические цепи, потенциометрия
- •25.1. Возникновение двойного электрического слоя и виды электрических потенциалов
- •25.2. Электродный потенциал. Стандартный водородный электрод. Гальванические цепи. Уравнение нернста
- •25.3. Восстановительный потенциал
- •25.4. Диффузионный потенциал
- •25.5. Мембранный потенциал
- •25.6. Потенциометрия
- •25.6.1. Хлорсеребряный электрод сравнения
- •25.6.2. Ионо- и молекулярноселективные электроды определения
- •25.6.3. Потенциометрическое титрование
- •Глава 26 физико-химические основы поверхностных явлений
- •26.1. Свободная поверхностная энергия
- •26.2. Сорбция и ее виды
- •26.3. Абсорбция
- •26.4. Адсорбция
- •26.4.1. Адсорбция на неподвижной поверхности раздела фаз
- •26.4.2. Молекулярная адсорбция из растворов на твердых адсорбентах
- •26.4.3. Адсорбция ионов из растворов
- •26.4.4. Ионообменная адсорбция
- •26.5. Адсорбция на подвижной поверхности раздела фаз
- •26.6. Поверхностно-активные вещества
- •26.7. Хроматография
- •Глава 27 физикохимия дисперсных систем
- •27.2. Лиофобные коллоидные растворы
- •27.2.1. Строение мицелл в лиофобных коллоидных растворах
- •27.2.2. Свойства лиофобных коллоидных растворов
- •27.2.3. Влияние высокомолекулярных соединений на устойчивость лиофобных коллоидов. Флокуляция
- •27.3. Лиофильные коллоидные растворы
- •27.3.1. Строение мицелл пав и вмс в водных коллоидных растворах в зависимости от их концентрации
- •27. 3. 2. Получение и свойства лиофильных коллоидных растворов
- •27.3.3. Моющее действие растворов пав
- •27.3.4. Особенности растворов биополимеров
- •27.4. Структурообразование в растворах вмс. Возникновение связнодисперсных систем и их свойства
- •27.5. Грубодисперсные системы
- •27.5.1. Суспензии
- •27.5.2. Эмульсии
- •27.5.3. Аэрозоли
- •27.6. Электрокинетические явления в дисперсных системах
- •27.7. Ткани организма - дисперсные системы
- •27.7.1. Строение и свойства межклеточных мембран
- •27.7.2. Кровь - сложная дисперсная система
- •Приложение 1 применение осмолярной и осмоляльной концентраций в практической медицине
12.3. Строение и химические свойства галогенов и их соединений
Галогены фтор F, хлор С1, бром Вг, иод I являются элементами группы VILA. Электронная конфигурация валентной оболочки атомов галогенов в основном состоянии ns2np5. Наличие пяти электронов на внешней р-орбитали, в том числе одного неспаренного, является причиной высокого сродства галогенов к электрону. Присоединение электрона приводит к образованию галогенид-анионов (F-, С1-, Вг-, I-) с устойчивой 8-электронной оболочкой ближайшего благородного газа. Галогены - ярко выраженные неметаллы.
Самый электроотрицательный элемент фтор имеет в соединениях только одну степень окисления — 1, так как всегда является акцептором электронов. Другие галогены в соединениях могут иметь степень окисления от -1 до +7. Положительные степени окисления галогенов вызваны переходом их валентных электронов на свободные d-орбитали внешнего уровня (разд. 2.1.3) при образовании связей с более электроотрицательными элементами.
Молекулы галогенов двухатомные: F2, С12, Вг2, I2. При стандартных условиях фтор и хлор - газы, бром - летучая жидкость (Tкип = 59 °С), а иод - твердый, но он легко возгоняется (переходит в газообразное состояние, минуя жидкое).
Окислительно-восстановительные свойства. Галогены являются сильными окислителями, вступая во взаимодействие почти со всеми металлами и многими неметаллами:
Особенно высокую химическую активность проявляет фтор, который при нагревании реагирует даже с благородными газами ксеноном, криптоном и радоном:
Химическая активность галогенов уменьшается от фтора к иоду, так как с увеличением радиуса атома способность галогенов присоединять электроны уменьшается:
Более активный галоген всегда вытесняет менее активный из его соединений с металлами. Так, фтор вытесняет все другие галогены из их галогенидов, а бром - только иод из иодидов:
Различная окислительная способность галогенов проявляется и в их действии на организм. Газообразные хлор и фтор из-за очень сильных окислительных свойств являются мощными отравляющими веществами, вызывающими тяжелые поражения легких и слизистых оболочек глаз, носа и гортани. Иод - более мягкий окислитель, проявляющий антисептические свойства, поэтому он широко используется в медицине.
Различия в окислительно-восстановительных свойствах галогенов проявляются и при их взаимодействии с водой. Фтор окисляет воду, при этом восстановителем выступает атом кислорода молекулы волы:
В
заимодействие
остальных галогенов с водой сопровождается
окислительно-восстановительной
дисмутацией их атомов. Так, при реакции
хлора с водой один из атомов молекулы
хлора, присоединяя электрон от другого
атома, восстанавливается, а другой атом
хлора, отдавая электрон, окисляется.
При этом образуется хлорная
вода, содержащая
хлористый водород (соляную кислоту)
и гипохлористую (хлорноватистую) кислоту:
Р
еакция
является обратимой, а ее равновесие
сильно смещено влево. Гипохлористая
кислота неустойчива и легко распадается,
особенно на свету, с образованием очень
сильного окислителя -атомарного
кислорода:
Таким образом, хлорная вода содержит в различных концентрациях три окислителя с разной окислительной способностью: молекулярный хлор, гипохлористую кислоту и атомарный кислород, сумму которых часто называют "активный хлор".
Образующийся атомарный кислород обесцвечивает красители и убивает микробы, что объясняет отбеливающее и бактерицидное действие хлорной воды.
Гипохлористая кислота - более сильный окислитель, чем газообразный хлор. Она реагирует с органическими соединениями RH и как окислитель, и как хлорирующий реагент:
Поэтому при хлорировании питьевой воды, содержащей в качестве примесей органические вещества, они могут превратиться в более токсичные хлорорганические соединения RC1. Это обязательно следует учитывать при разработке способов очистки воды и их применении.
П
ри
добавлении к хлорной воде щелочи
равновесие смещается вправо вследствие
нейтрализации гипохлористой и соляной
кислот:
П
олученный
раствор смеси солей, называемый жавелевой
водой, используется
как отбеливающее и дезинфицирующее
средство. Эти свойства обусловлены тем,
что гипохлорит калия под действием
СО2 + Н20
и в результате гидролиза превращается
в неустойчивую гипохлористую кислоту,
образующую атомарный кислород. В
результате жавелевая вода разрушает
красящие вещества и убивает микробы.
П
ри
действии газообразного хлора на влажную
гашеную известь Са(ОН)2
получают смесь солей СаСl2
и Са(0С1)2,
называемую хлорной
известью:
Х
лорную
известь можно рассматривать как смешанную
кальциевую соль соляной и гипохлористой
кислот CaCl(OCl).
Во влажном воздухе хлорная известь,
взаимодействуя с водой и углекислым
газом, постепенно выделяет гипохлористую
кислоту, которая обеспечивает ее
отбеливающее, дезинфицирующее и
дегазирующие свойства:
При
действии на хлорную известь соляной
кислоты происходит выделение свободного
хлора:
При нагревании гипохлористая кислота в результате окислительно-восстановительного диспропорционирования разлагается с образованием соляной и хлорноватой кислот:
При пропускании хлора через горячий раствор щелочи, например КОН, образуются хлорид калия и хлорат калия КClO3 (бертолетова соль):
Окислительная способность анионов кислородсодержащих кислот хлора в водных растворах в ряду СlO- - СlO4(-) уменьшается несмотря на возрастание в них степени окисления хлора:
Это объясняется повышением устойчивости анионов в указанном ряду вследствие усиления делокализации их отрицательного заряда. В то же время перхлораты LiC104, КСlO4 в сухом состоянии при высоких температурах являются сильными окислителями и используются для минерализации различных биоматериалов при определении в них содержащихся неорганических компонентов.
Анионы галогенов (кроме F-) способны отдавать электроны, поэтому они являются восстановителями. Восстановительная способность галогенид-анионов по мере возрастания их радиуса увеличивается от хлорид-аниона к иодид-аниону:
Так, иодоводородная кислота окисляется кислородом воздуха уже при обычной температуре:
Соляная кислота не окисляется кислородом, и поэтому хлорид-анион устойчив в условиях организма, что очень важно с позиции физиологии и медицины.
Кислотно-основные свойства. Водородгалогениды HF, НС1, HBr, HI вследствие полярности их молекул хорошо растворяются в воде. При этом происходит гидратация молекул, приводящая к их диссоциации с образованием гидратированных протонов и галогенид-анионов. Сила кислот в ряду HF, НС1, HBr, HI возрастает вследствие увеличения радиуса и поляризуемости анионов от F- к I-.
Соляная кислота как компонент желудочного сока играет важную роль в процессе пищеварения. В основном за счет соляной кислоты, массовая доля которой в желудочном соке составляет 0,3 %, его рН поддерживается в интервале от 1 до 3. Соляная кислота способствует переходу фермента пепсина в активную форму, что обеспечивает переваривание белков за счет гидролитического расщепления пептидных связей с образованием различных аминокислот:
Определение содержания соляной кислоты и других кислот в желудочном соке было рассмотрено в разд. 8.3.3.
В ряду кислородсодержащих кислот хлора по мере увеличения его степени окисления сила кислот увеличивается.
Это связано с увеличением полярности связи О—Н из-за смещения ее электронной плотности к атому хлора, а также из-за повышения устойчивости анионов.
К
омплексообразующие
свойства. Анионы
галогенов склонны к комплексообразованию
в качестве лигандов. Устойчивость
галогенидных комплексов обычно
уменьшается в ряду F-
> Сl-
> Вr-
> > I-.
Именно процессом комплексообразования
объясняется токсическое действие
фторид-анионов, которые, образуя фторидные
комплексы с катионами металлов, входящих
в активные центры ферментов, подавляют
их активность.
И
нтересные
комплексообразующие свойства проявляет
молекула иода. Так, растворимость
молекулярного иода в воде резко возрастает
в присутствии иодида калия, что связано
с образованием комплексного аниона
Невысокая устойчивость этого комплексного иона обеспечивает наличие молекулярного иода в растворе. Поэтому в медицине используется в качестве бактерицидного средства водный раствор иода с добавлением KI. Кроме того, молекулярный иод образует комплексы включения с крахмалом (разд. 22.3) и поливиниловым спиртом (синий иод). В этих комплексах молекулы иода или их ассоциаты с иодид-анионами заполняют каналы, образованные спиралевидной структурой соответствующих полигидроксиполимеров. Комплексы включения не очень устойчивы и способны постепенно отдавать молекулярный иод. Поэтому такой препарат, как синий иод, является эффективным, но мягким бактерицидным средством пролонгированного действия.
Биологическая роль и применение галогенов и их соединений в медицине. Галогены в виде различных соединений входят в состав живых тканей. В организме все галогены имеют степень окисления — 1. При этом хлор и бром существуют в виде гидратированных анионов Сl- и Вr-, а фтор и иод входят в состав нерастворимых в воде биосубстратов:.
Соединения фтора являются компонентами костной ткани, ногтей и зубов. Биологическое действие фтора прежде всего связано с проблемой болезней зубов. Фторид-анион, замещая в гидроксиапатите гидроксид-ион, образует слой защитной эмали из твердого фторапатита:
Фторирование питьевой воды до концентрации фторид-иона 1 мг/л и добавление фторида натрия в зубную пасту значительно снижают кариес зубов у населения. В то же время при концентрации фторид-аниона в питьевой воде выше 1,2 мг/л повышается хрупкость костей, зубной эмали и появляется общее истощение организма, называемое флуорозом.
Хлорид-анионы обеспечивают ионные потоки через клеточные мембраны, участвуют в поддержании осмотического гомеостаза, создают благоприятную среду для действия и активации протолитических ферментов желудочного сока.
Бромид-анионы в организме человека локализуются преимущественно в гипофизе и других железах внутренней секреции. Установлено наличие динамической связи между содержанием в организме бромид- и хлорид-анионов. Так, повышенное содержание в крови бромид-анионов способствует быстрому выделению почками хлорид-анионов. Бромиды локализуются в основном в межклеточной жидкости. Они усиливают тормозные процессы в нейронах коры головного мозга, в связи с чем бромиды калия, натрия и бромкамфора применяются в фармакологии.
Иод и его соединения влияют на синтез белков, жиров и гормонов. Больше половины количества иода находится в щитовидной железе в связанном состоянии в виде тиреоидных гормонов. При недостаточном поступлении иода в организм развивается эндемический зоб. С целью профилактики этого заболевания к поваренной соли добавляют NaI или KI (1-2 г на 1 кг NaCl). Таким образом, все галогены необходимы для нормального функционирования живых организмов.
