- •Оглавление
- •Глава 1 16
- •Глава 2 химическая связь 33
- •Глава 3 54
- •Глава 4 82
- •Глава 5 110
- •Глава 6 141
- •Глава 7 173
- •Глава 8 196
- •Глава 9 234
- •Глава 10 комплексные соединения и их свойства 272
- •Глава 11 297
- •Глава 12 316
- •Глава 13 377
- •Глава 14 400
- •Глава 15 основные понятия органической химии 419
- •Глава 16 445
- •Глава 17 474
- •Глава 18 499
- •Глава 19 518
- •Глава 20 562
- •Глава 21 аминокислоты, пептиды и белки 578
- •Глава 22 620
- •Глава 23 651
- •Глава 24 692
- •Глава 25 709
- •Глава 26 740
- •Глава 27 771
- •От автора
- •Глава 1 строение атома, периодический закон и периодическая система элементов д. И. Менделеева
- •1.1. Строение атома
- •1.1.1. Квантовые числа
- •1.1.2. Принципы заполнения атомных орбиталей электронами
- •1.2. Периодический закон и периодическая система элементов д. И. Менделеева
- •1.3. Основные характеристики атомов элементов
- •1.3.1. Радиус атома
- •1.3.2. Энергия ионизации
- •1.3.3. Энергия сродства к электрону
- •1.3.4. Относительная электроотрицательность
- •Глава 2 химическая связь
- •2.1. Ковалентная связь
- •2.1.1. И молекулярные орбитали
- •2.1.2. Механизмы возникновения ковалентной связи
- •2.1.3. Особенности ковалентной связи
- •2.2. Ионная связь
- •2.3. Металлическая связь
- •Глава 3 межмолекулярные взаимодействия и агрегатное состояние вещества
- •3.1. Межмолекулярные взаимодействия
- •3.2. Агрегатное состояние вещества
- •3.2.1. Твердое состояние
- •3.2.2. Жидкое состояние
- •3.2.3. Жидкокристаллическое состояние
- •3.2.4. Паро- и газообразное состояния
- •Глава 4 основы химической термодинамики и биоэнергетики
- •4.1. Основные понятия термодинамики
- •4.2. Первый закон термодинамики
- •4.3. Понятие о самопроизвольных процессах.
- •4.4. Второй закон термодинамики. Энергия гиббса
- •4.5. Принцип энергетического сопряжения биохимических реакций
- •Г лава 5 основы кинетики биохимических реакций и химического равновесия
- •5.1. Основные понятия и терминология раздела
- •5.2. Факторы, влияющие на скорость гомогенных реакций
- •5.2.1. Влияние природы реагирующих веществ
- •5.2.2. Влияние концентрации реагентов.
- •5.2.3. Влияние температуры. Энергия активации
- •5.2.4. Влияние катализатора
- •5.3. Особенности кинетики гетерогенных реакций
- •5.4. Особенности кинетики цепных реакций
- •5.5. Химическое равновесие
- •5.5.1. Смещение химического равновесия
- •5.6. Ферментативный катализ и его особенности
- •5.7. Автоколебательные биохимические процессы
- •Г лава 6 растворы и их коллигативные свойства
- •6.1. Вода как растворитель и ее роль в жизнедеятельности организма
- •6.2. Термодинамика процесса растворения
- •6.З. Способы выражения концентрации растворов
- •6.4. Коллигативные свойства растворов
- •6.4.1. Диффузия
- •6.4.2. Осмос. Осмотическое и онкотическое давление
- •6.4.3. Давление насыщенного пара над раствором
- •6.4.4. Температура кипения и замерзания раствора
- •Глава 7 растворы электролитов и ионные равновесия
- •7.1. Электролитическая диссоциация
- •7.2. Равновесие в растворах слабых электролитов
- •7.2.1. Влияние общего иона и противоиона на равновесие
- •7.2.2. Взаимосвязь константы диссоциации и степени диссоциации
- •7.3. Особенности растворов сильных электролитов. Ионная сила раствора
- •7.4. Электролитическая диссоциация и ионное произведение воды
- •7.5. Водородный и гидроксильный показатели (рН и рОн)
- •7.6. Физико-химические основы водно-электролитного баланса в организме
- •Г лава 8 теория кислот и оснований и протолитические равновесия
- •8.1. Протолитическая теория кислот и оснований
- •8.2. Кислотно-основные свойства а-аминокислот
- •8.3. Важнейшие кислотно-основные реакции
- •8.3.1. Гидролиз солей
- •8.3.2. Реакции нейтрализации
- •8.3.3. Общая, активная и потенциальная кислотность растворов
- •8.4. Протолитический баланс. Буферные растворы и их свойства
- •8.5. Буферные системы организма, их взаимодействие, явления ацидоза и алкалоза
- •9.1. Основные понятия и факторы, влияющие на протекание окислительно-восстановительных реакций
- •9.2. Направление протекания окислительно-восстановительных реакций
- •9.3. Особенности биохимических окислительно-восстановительных процессов в организмах
- •9.3.1. Степень окисления углерода в органических соединениях
- •9.3.2. Биохимические реакции внутри- и межмолекулярной окислительно-восстановительной дисмутации за счет атомов углерода
- •9.3.3. Окислительно-восстановительные превращения кофакторов и коферментов оксидоредуктаз
- •9.3.4. Электронотранспортные цепи
- •9.3.5. Дегидрогеназное окисление-восстановление
- •9.3.6. Окислительное фосфорилирование
- •9.3.7. Фотофосфорилирование
- •9.3.8. Оксигеназное окисление-восстановление
- •9.3.9. Свободнорадикальное окисление и антиоксидантная система организма
- •9.4. Использование окислителей и восстановителей в медико-санитарной практике
- •Глава 10 комплексные соединения и их свойства
- •10.1. Основные понятия и терминология
- •10.2. Химическая связь в комплексных соединениях и особенности их строения
- •10.3. Химические свойства комплексных соединений
- •10.4. Медико-биологическая роль комплексных соединений
- •10.5. Металлолигандный баланс и его нарушения
- •10.6. Комплексонометрия
- •Глава 11 гетерогенные процессы и равновесия в растворах
- •11.1. Основные понятия и теоретические основы
- •11.2. Гетерогенные равновесия в растворах, связанные с процессом кристаллизации
- •11.3. Гетерогенные равновесия в растворах, связанные с процессом расслоения
- •11.4. Гетерогенные равновесия в живых системах
- •Глава 12 химия элементов-органогенов
- •12.2. Строение, химические свойства и роль элементов-органогенов и их соединений в растительном и животном мире
- •12.2.1. Водород и его соединения
- •12.2.2. Углерод и его соединения
- •12.2.3. Азот и его соединения
- •12.2.4. Фосфор и его соединения
- •12.2.5. Кислород и его соединения
- •12.2.6. Сера и ее соединения
- •12.3. Строение и химические свойства галогенов и их соединений
- •Глава 13 химия ионов металлов жизни и их роль в растительном и животном мире
- •13.1. Химия ионов s-металлов в организме
- •13.1.1. Натрий и калий
- •13.1.2. Магний и кальций
- •13.2. Химия ионов d-металлов в организме
- •13.2.1. Марганец
- •13.2.2. Железо и кобальт
- •13.2.3. Медь
- •13.2.4. Цинк
- •13.2.5. Молибден
- •Глава 14 химия и анализ загрязнений окружающей среды
- •14.1. Химия загрязнений атмосферы
- •14.1.1. Токсический смог
- •14.1.2. Фотохимический смог
- •14.1.3. Кислотные дожди
- •14.1.4. Загрязнение атмосферы другими токсикантами
- •14.1.5. Разрушение озонового слоя
- •14.2. Методы анализа токсикантов и методы снижения их поступления в атмосферу
- •14.3. Загрязнение гидросферы. Понятие об общих показателях, характеризующих природные и сточные воды
- •Глава 15 основные понятия органической химии
- •15.1. Основы классификации и номенклатуры органических соединений
- •15.2. Пространственная структура биоорганических молекул и виды изомерии
- •15.3. Понятие о взаимном влиянии атомов в молекуле и электронные эффекты
- •15.4. Классификация органических реакций и их компонентов
- •Г лава 16 алифатические и ароматические углеводороды
- •16.1. Строение и реакционная способность алканов
- •16.2. Строение и реакционная способность ненасыщенных углеводородов: алкенов и диенов
- •16.3. Ароматические углеводороды (арены)
- •Глава 17 спирты, фенолы, простые эфиры, тиолы и сульфиды
- •17.2. Физико-химические свойства спиртов и фенолов
- •17.3. Химические свойства спиртов
- •17.4. Химические свойства фенолов
- •17.5. Простые эфиры
- •17.6. Тиолы и сульфиды
- •Г лава 18 альдегиды, кетоны и их производные
- •18.1. Строение, номенклатура и физико-химические свойства альдегидов и кетонов
- •18.2. Химические свойства альдегидов и кетонов
- •18.2.1. Кислотно-основные свойства
- •18.2.2. Электрофильно-нуклеофильные свойства
- •18.2.3. Окислительно-восстановительные свойства
- •18.2.4. Комплексообразующие свойства
- •18.3. Альдегиды и кетоны в окружающей среде
- •Г лава 19 карбоновые кислоты и их функциональные производные
- •19.2. Химические свойства предельных кислот и их производных
- •19.2.1. Кислотно-основные свойства
- •19.2.2. Карбоновые кислоты как ацилирующие реагенты
- •19.2.3. Производные карбоновых кислот, их свойства и взаимные превращения
- •19.2.4. Окислительно-восстановительные свойства карбоновых кислот и их производных
- •19.3. Особенности свойств замещенных карбоновых кислот и их производных
- •19.3.1. Дикарбоновые кислоты
- •19.3.2. Гидроксикарбоновые кислоты
- •19.3.3. Оксокарбоновые кислоты
- •19.3.4. Ненасыщенные карбоновые кислоты
- •19.4. Основные реакции метаболизма карбоновых кислот
- •19.4.1. Биосинтез жирных кислот
- •1 9.4.2. Биологическое окисление жирных кислот
- •19.4.3. Реакции цикла кребса
- •19.5. Кислоты ароматического ряда и их производные как лекарственные средства
- •Г лава 20 Липиды
- •20.1. Жиры и воски
- •20.2. Омыляемые сложные липиды
- •20.3. Неомыляемые липиды - низкомолекулярные биорегуляторы
- •Глава 21 аминокислоты, пептиды и белки
- •21.1. Строение, классификация и физико-химические свойства а-аминокислот
- •21.2. Химические свойства а-аминокислот
- •21.2.1. Кислотно-основные свойства и прототропная таутомерия
- •21.2.2. К0мплекс00бразующие свойства
- •21.2.3. Электрофильно-нуклеофильные свойства
- •21.2.4. Окислительно-восстановительные свойства
- •21.3. Структура и свойства пептидов
- •21.4. Структура и свойства белков
- •Глава 22 углеводы и полисахариды
- •22.1. Строение, изомерия и свойства моносахаридов
- •22.1.1. Химические свойства моносахаридов и их производных
- •22.1.2. Катаболизм глюкозы - гликолиз
- •22.3. Полисахариды, их структура и свойства
- •22.3.1. Гомополисахариды
- •22.3.2. Гетерополисахариды, протеогликаны, гликопротеины
- •Г лава 23 биологически важные азотсодержащие соединения
- •23.1. Электронные состояния атома азота в его соединениях и свойства этих соединений
- •23.2. Роль аммиака для живых организмов и пути его обезвреживания. Цикл мочевины и ее свойства
- •23.3. Азотсодержащие ароматические гетероциклические соединения
- •23.4. Нуклеозиды, нуклеотиды и нуклеиновые кислоты, их структура и свойства
- •Г лава 24 электрохимия. Электрическая проводимость растворов электролитов
- •24.1. Электрическая подвижность ионов в растворе
- •24.2. Удельная электрическая проводимость растворов электролитов
- •24.3. Молярная электрическая проводимость растворов электролитов
- •24.4. Закон независимого движения ионов в разбавленных растворах (закон кольрауша)
- •24.5. Кондуктометрические методы анализа
- •24.5.1. Кондуктометрическое титрование
- •24.6. Электрическая проводимость биологических объектов в норме и патологии
- •Г лава 25 межфазные электрические потенциалы, гальванические цепи, потенциометрия
- •25.1. Возникновение двойного электрического слоя и виды электрических потенциалов
- •25.2. Электродный потенциал. Стандартный водородный электрод. Гальванические цепи. Уравнение нернста
- •25.3. Восстановительный потенциал
- •25.4. Диффузионный потенциал
- •25.5. Мембранный потенциал
- •25.6. Потенциометрия
- •25.6.1. Хлорсеребряный электрод сравнения
- •25.6.2. Ионо- и молекулярноселективные электроды определения
- •25.6.3. Потенциометрическое титрование
- •Глава 26 физико-химические основы поверхностных явлений
- •26.1. Свободная поверхностная энергия
- •26.2. Сорбция и ее виды
- •26.3. Абсорбция
- •26.4. Адсорбция
- •26.4.1. Адсорбция на неподвижной поверхности раздела фаз
- •26.4.2. Молекулярная адсорбция из растворов на твердых адсорбентах
- •26.4.3. Адсорбция ионов из растворов
- •26.4.4. Ионообменная адсорбция
- •26.5. Адсорбция на подвижной поверхности раздела фаз
- •26.6. Поверхностно-активные вещества
- •26.7. Хроматография
- •Глава 27 физикохимия дисперсных систем
- •27.2. Лиофобные коллоидные растворы
- •27.2.1. Строение мицелл в лиофобных коллоидных растворах
- •27.2.2. Свойства лиофобных коллоидных растворов
- •27.2.3. Влияние высокомолекулярных соединений на устойчивость лиофобных коллоидов. Флокуляция
- •27.3. Лиофильные коллоидные растворы
- •27.3.1. Строение мицелл пав и вмс в водных коллоидных растворах в зависимости от их концентрации
- •27. 3. 2. Получение и свойства лиофильных коллоидных растворов
- •27.3.3. Моющее действие растворов пав
- •27.3.4. Особенности растворов биополимеров
- •27.4. Структурообразование в растворах вмс. Возникновение связнодисперсных систем и их свойства
- •27.5. Грубодисперсные системы
- •27.5.1. Суспензии
- •27.5.2. Эмульсии
- •27.5.3. Аэрозоли
- •27.6. Электрокинетические явления в дисперсных системах
- •27.7. Ткани организма - дисперсные системы
- •27.7.1. Строение и свойства межклеточных мембран
- •27.7.2. Кровь - сложная дисперсная система
- •Приложение 1 применение осмолярной и осмоляльной концентраций в практической медицине
12.2.2. Углерод и его соединения
Углерод в периодической системе элементов располагается во втором периоде в группе IVA. Электронная конфигурация атома углерода ls22s22p2. При его возбуждении легко достигается электронное состояние, при котором на четырех внешних атомных орбиталях находятся четыре неспаренных электрона:
Это объясняет, почему углерод в соединениях обычно четырехвалентен. Равенство в атоме углерода числа валентных электронов числу валентных орбиталей, а также уникальное соотношение заряда ядра и радиуса атома сообщают ему способность одинаково легко присоединять и отдавать электроны в зависимости от свойств партнера (разд. 9.3.1). Вследствие этого для углерода характерны различные степени окисления от —4 до +4 и легкость гибридизации его атомных орбиталей по типу sp3, sp2 и sp1 при образовании химических связей (разд. 2.1.3):
Все это дает углероду возможность образовывать ординарные, двойные и тройные связи не только между собой, но и с атомами других элементов-органогенов. Молекулы, образующиеся при этом, могут иметь линейное, разветвленное и циклическое строение.
Вследствие подвижности общих электронов -МО, образованных с участием атомов углерода, происходит их смещение в сторону атома более электроотрицательного элемента (индуктивный эффект), что приводит к полярности не только этой связи, но и молекулы в целом. Однако углерод, благодаря среднему значению электроотрицательности (0Э0 = 2,5), образует с атомами других элементов-органогенов слабополярные связи (табл. 12.1). При наличии в молекулах систем сопряженных связей (разд. 2.1.3) происходит делокализация подвижных электронов -МО и неподеленных электронных пар с выравниванием электронной плотности и длин связей в этих системах.
С позиции реакционной способности соединений большую роль играет поляризуемость связей (разд. 2.1.3). Чем больше поляризуемость связи, тем выше ее реакционная способность. Зависимость поляризуемости углеродсодержащих связей от их природы отражает следующий ряд:
Все рассмотренные данные о свойствах углеродсодержащих связей свидетельствуют о том, что углерод в соединениях образует, с одной стороны, достаточно прочные ковалентные связи между собой и с другими органогенами, а с другой стороны - общие электронные пары этих связей достаточно лабильны. В результате этого может происходить как увеличение реакционной способности этих связей, так и стабилизация. Именно эти особенности углеродсодержащих соединений и делают углерод органогеном номер один.
Кислотно-основные свойства соединений углерода. Оксид углерода(4) является кислотным оксидом, а соответствующий ему гидроксид - угольная кислота Н2СО3 - слабой кислотой. Молекула оксида углерода(4) неполярна, и поэтому он плохо растворяется в воде (0,03 моль/л при 298 К). При этом вначале в ратворе образуется гидрат СО2 Н2О, в котором СО2 находится в полости ассоциата из молекул воды, а затем этот гидрат медленно и обратимо превращается в Н2СО3. Большая часть растворенного в воде оксида углерода(4) находится в виде гидрата.
В организме в эритроцитах крови под действием фермента каррбоангидразы равновесие между гидратом CO2 • Н2О и Н2СО3 устанавливается очень быстро. Это позволяет пренебречь наличием СО2 в виде гидрата в эритроците, но не в плазме крови, где нет карбоангидразы. Образующаяся Н2СО3 диссоциирует в физиологических условиях до гидрокарбонат-аниона, а в более щелочной среде - до карбонат-аниона:
Угольная кислота существует только в растворе. Она образует два ряда солей - гидрокарбонаты (NаНСОз, Са(НС03)2) и карбонаты (Nа2СОз, СаСОз). В воде гидрокарбонаты растворяются лучше, чем карбонаты. В водных растворах соли угольной кислоты, особенно карбонаты, легко гидролизуются по аниону, создавая щелочную среду:
Такие вещества, как питьевая сода NaHC03; мел СаСОз, белая магнезия 4MgC03 * Mg(OH)2 * Н2О, гидролизующиеся с образонанием щелочной среды, применяются в качестве антацидных (нейтрализующих кислоты) средств для снижения повышенной кислотности желудочного сока:
Совокупность угольной кислоты и гидрокарбонат-иона (Н2СО3, НСО3(-)) образует гидрокарбонатную буферную систему (разд. 8.5) -славную буферную систему плазмы крови, которая обеспечивает постоянство рН крови на уровне рН = 7,40 ± 0,05.
Н
аличие
в природных водах гидрокарбонатов
кальция и магния обуславливает их
временную жесткость. При кипячении
такой воды ее жесткость устраняется.
Это происходит из-за гидролиза аниона
HCO3(-)),
термического разложения угольной
кислоты и осаждения катионов кальция
и магния в виде нерастворимых
соединений СаС03
и Mg(OH)2:
Образование Mg(OH)2 вызвано полным гидролизом по катиону магния, протекающему в этих условиях из-за меньшей растворимости Mg(0H)2 по сравнению с MgC03.
В медико-биологической практике кроме угольной кислоты приходится сталкиваться с другими углеродсодержащими кислотами. Это прежде всего большое множество различных органических кислот, а также синильная кислота HCN. С позиции кислотных свойств сила этих кислот различна:
Эти различия обусловлены взаимным влиянием атомов в молекуле, природой диссоциирующей связи и устойчивостью аниона, т. е. его способностью к делокализации заряда.
Синильная кислота, или циановодород, HCN - бесцветная, легколетучая жидкость (Ткип = 26 °С) с запахом горького миндаля, смешивающаяся с водой в любых соотношениях. В водных растворах ведет себя как очень слабая кислота, соли которой называются цианидами. Цианиды щелочных и щелочноземельных металлов растворимы в воде, при этом они гидролизуются по аниону, из-за чего их водные растворы пахнут синильной кислотой (запах горького миндаля) и имеют рН >12:
П
ри
длительном воздействии СО2, содержащегося
в воздухе, цианиды разлагаются с
выделением синильной кислоты:
В результате этой реакции цианид калия (цианистый калий) и его растворы при длительном хранении теряют свою токсичность. Цианид-анион - один из самых сильных неорганических ядов, поскольку он является активным лигандом и легко образует устойчивые комплексные соединения с ферментами, содержащими в качестве ионовкомплексообразователей Fe3+ и Сu2(+) (разд. 10.4).
Окислительно-восстановительные свойства. Поскольку углерод в соединениях может проявлять любые степени окисления от -4 до +4, то в ходе реакции свободный углерод может и отдавать и присоединять электроны, выступая соответственно восстановителем или окислителем в зависимости от свойств второго реагента:
П
ри
взаимодействии сильных окислителей с
органическими веществами может протекать
неполное или полное окисление атомов
углерода этих соединений.
В условиях анаэробного окисления при недостатке или в отсутствие кислорода атомы углерода органического соединения в зависимости от содержания кислородных атомов в этих соединениях и внешних условий могут превратиться в С02, СО, С и даже СН4, а остальные органогены превращаются в Н2О, NH3 и H2S.
В организме полное окисление органических соединений кислородом в присутствии ферментов оксидаз (аэробное окисление) описывается уравнением:
Из приведенных уравнений реакций окисления видно, что в органических соединениях степень окисления изменяют только атомы углерода, а атомы остальных органогенов при этом сохраняют свою степень окисления.
При реакциях гидрирования, т. е. присоединения водорода (восстановителя) по кратной связи, образующие ее атомы углерода понижают свою степень окисления (выступают окислителями):
Органические реакции замещения с возникновением новой межуглеродной связи, например в реакции Вюрца, также являются окислительно-восстановительными реакциями, в которых атомы углерода выступают окислителями, а атомы металла -восстановителями:
Подобное наблюдается в реакциях образования металлорганических соединений:
В
то же время в реакциях алкилирования с
возникновением новой межуглеродной
связи роль окислителя и восстановителя
играют атомы углерода субстрата и
реагента соответственно:
В результате реакций присоединения полярного реагента к субстрату по кратной межуглеродной связи один из атомов углерода понижает степень окисления, проявляя свойства окислителя, а другой - повышает степень окисления, выступая восстановителем:
В этих случаях имеет место реакция внутримолекулярного окисления-восстановления атомов углерода субстрата, т. е. процесс дисмутации, под действием реагента, не проявляющего окислительно-восстановительных свойств.
Типичными реакциями внутримолекулярной дисмутации органических соединений за счет их атомов углерода являются реакции декарбоксилирования аминокислот или кетокислот, а также реакции перегруппировки и изомеризации органических соединений, которые были рассмотрены в разд. 9.3. Приведенные примеры органических реакций, а также реакции из разд. 9.3 убедительно свидетельствуют, что атомы углерода в органических соединениях могут быть и окислителями, и восстановителями.
Атом углерода в соединении - окислитель, если в результате реакции увеличивается число его связей с атомами менее электроотрицательных элементов (водород, металлы), потому что, притягивая к себе общие электроны этих связей, рассматриваемый атом углерода понижает свою степень окисления.
Атом углерода в соединении - восстановитель, если в результате реакции увеличивается число его связей с атомами более электроотрицательных элементов (С, О, N, S), потому что, отталкивая от себя общие электроны этих связей, рассматриваемый атом углерода повышает свою степень окисления.
Таким образом, многие реакции в органической химии вследствие окислительно-восстановительной двойственности атомов углерода являются окислительно-восстановительными. Однако, в отличие от подобных реакций неорганической химии, перераспределение электронов между окислителем и восстановителем в органических соединениях может сопровождаться лишь смещением общей электронной пары химической связи к атому, выполняющему роль окислителя. При этом данная связь может сохраняться, но в случаях сильной ее поляризации она может и разорваться.
Комплексообразующие свойства соединений углерода. У атома углерода в соединениях нет неподеленных электронных пар, и поэтому лигандами могут выступать только соединения углерода, содержащие кратные связи с его участием. Особенно активны в процессах комплексообразования -электроны тройной полярной связи оксида углерода(2) и аниона синильной кислоты.
В
молекуле оксида углерода(2) атомы углерода
и кислорода образуют одну
и одну
-связь за счет взаимного перекрывания
их двух 2р-атомных орбиталей по обменному
механизму. Третья связь, т. е. еще одна
-связь, образуется по донорно-акцепторному
механизму. Акцептором является свободная
2р-атомная ор-биталь атома углерода, а
донором - атом кислорода, предоставляющий
неподеленную пару электронов с
2p-орбитали:
Повышенная
кратность связи
обеспечивает
этой молекуле высокую стабильность и
инертность при нормальных условиях
с позиции кислотно-основных (СО -
несолеобразующий оксид) и
окислительно-восстановительных свойств
(СО — восстановитель при Т
> 1000
К). В то же время она делает его активным
лигандом в реакциях комплексообразования
с атомами и катионами d-металлов,
прежде всего с железом, с которым он
образует пентакарбонил железа - летучую
ядовитую жидкость:
С
пособность
к образованию комплексных соединений
с катионами d-металлов
является причиной ядовитости оксида
углерода(Н) для живых систем (разд. 10.4)
вследствие
протекания обратимых реакций с
гемоглобином и оксигемоглобином,
содержащими катион Fe2+,
с образованием карбоксигемоглобина:
Эти равновесия смещены в сторону образования карбоксигемоглобина ННbСО, устойчивость которого в 210 раз больше, чем оксигемоглобина ННbО2. Это приводит к накоплению карбоксигемоглобина в крови и, следовательно, к снижению ее способности переносить кислород.
В анионе синильной кислоты CN- также содержатся легко поляризуемые - электроны, из-за чего он эффективно образует комплексы с d-металлами, включая металлы жизни, входящие в состав ферментов. Поэтому цианиды являются высокотоксичными соединениями (разд. 10.4).
Круговорот углерода в природе. В основе круговорота углерода в природе в основном лежат реакции окисления и восстановления углерода (рис. 12.3).
Из атмосферы и гидросферы растения ассимилируют (1) оксид углерода(4). Часть растительной массы потребляется (2) человеком и животными. Дыхание животных и гниение их останков (3), а также дыхание растений, гниение отмерших растений и горение древесины (4) возвращают атмосфере и гидросфере CO2. Процесс минерализации останков растений (5) и животных (6) с образованием торфа, ископаемых углей, нефти, газа приводит к переходу углерода в природные ископаемые. В том же направлении действуют кислотно-основные реакции (7), протекающие между СО2 и различными горными породами с образованием карбонатов (средних, кислых и основных):
Эта неорганическая часть круговорота приводит к потерям СО2 в атмосфере и гидросфере. Деятельность человека по сжиганию и переработке угля, нефти, газа (8), дров (4), наоборот, с избытком обогащает окружающую среду оксидом углерода(4). Долгое время существовала уверенность, что благодаря фотосинтезу концентрация СО2 в атмосфере сохраняется постоянной. Однако в настоящее время увеличение содержания СО2 в атмосфере за счет деятельности человека не компенсируется его естественной убылью. Общее поступление СО2 в атмосферу растет в геометрической прогрессии на 4-5 % в год. Согласно расчетам в 2000 году содержание СО2 в атмосфере достигнет приблизительно 0,04 % вместо 0,03 % (1990 г.).
После рассмотрения свойств и особенностей углеродсодержащих соединений следует еще раз подчеркнуть ведущую роль углерода
Рис. 12.3. Круговорот углерода в природе
органогена № 1: во-первых, атомы углерода формируют скелет молекул органических соединений; во-вторых, атомы углерода играют ключевую роль в окислительно-восстановительных процессах, поскольку среди атомов всех органогенов именно для углерода наиболее характерна окислительно-восстановительная двойственность. Подробнее о свойствах органических соединений - см. модуль IV "Основы биоорганической химии".
Общая характеристика и биологическая роль р-элементов группы IVA. Электронными аналогами углерода являются элементы IVA группы: кремний Si, германий Ge, олово Sn и свинец Рb (см. табл. 1.2). Радиусы атомов этих элементов закономерно возрастают с увеличением порядкового номера, а их энергия ионизации и электроотрицательность при этом закономерно снижаются (разд. 1.3). Поэтому первые два элемента группы: углерод и кремний - типичные неметаллы, а германий, олово, свинец -металлы, так как для них наиболее характерна отдача электронов. В ряду Ge - Sn - Рb металлические свойства усиливаются.
С позиции окислительно-восстановительных свойств элементы С, Si, Ge, Sn и Рb в обычных условиях достаточно устойчивы по отношению к воздуху и воде (металлы Sn и Рb - за счет образования оксидной пленки на поверхности). В то же время соединения свинца(4) - сильные окислители:
Комплексообразующие свойства наиболее характерны для свинца, так как его катионы Рb2+ являются сильными комплексообразователями по сравнению с катионами остальных р-элементов IVA группы. Катионы свинца образуют прочные комплексы с биолигандами.
Элементы группы IVA резко различаются как по содержанию в организме, так и по биологической роли. Углерод играет основополагающую роль в жизнедеятельности организма, где его содержание составляет около 20 %. Содержание в организме остальных элементов IVA группы находится в пределах 10-6-10-3 %. В то же время, если кремний и германий, несомненно, играют важную роль в жизнедеятельности организма, то олово и особенно свинец - токсичны. Таким образом, с ростом атомной массы элементов IVA группы токсичность их соединений возрастает.
Пыль, состоящая из частиц угля или диоксида кремния SiO2, при систематическом воздействии на легкие вызывает заболевания - пневмокониозы. В случае угольной пыли это антракоз -профессиональное заболевание шахтеров. При вдыхании пыли, содержащей Si02, возникает силикоз. Механизм развития пневмокониозов еще не установлен. Предполагается, что при длительном контакте силикатных песчинок с биологическими жидкостями образуется поликремниевая кислота Si02 •yH2O в гелеобразном состоянии, отложение которой в клетках ведет к их гибели.
Токсическое действие свинца известно человечеству очень давно. Использование свинца для изготовления посуды и водопроводных труб приводило к массовому отравлению людей. В настоящее время свинец продолжает быть одним из основных загрязнителей окружающей среды, так как выброс соединений свинца в атмосферу составляет свыше 400 000 т ежегодно. Свинец накапливается в основном в скелете в форме малорастворимого фосфата РЬз(Р04)2, а при деминерализации костей оказывает регулярное токсическое действие на организм. Поэтому свинец относится к кумулятивным ядам. Токсичность соединений свинца связана прежде всего с его комплексообразующими свойствами и большим сродством к биолигандам, особенно содержащим сульфгидрильные группы (—SH):
Образование комплексных соединений ионов свинца с белками, фосфолипидами и нуклеотидами приводит к их денатурации. Часто ионы свинца ингибируют металлоферменты ЕМ2+, вытесняя из них катионы металлов жизни:
Свинец и его соединения относятся к ядам, действующим преимущественно на нервную систему, кровеносные сосуды и кровь. При этом соединения свинца влияют на синтез белка, энергетический баланс клеток и их генетический аппарат.
В медицине применяются как вяжущие наружные антисептические средства: свинец ацетат Рb(СНзСОО)2 • ЗН2О (свинцовые примочки) и свинец(2) оксид РbО (свинцовый пластырь). Ионы свинца этих соединений вступают в реакции с белками (альбуминами) цитоплазмы микробных клеток и тканей, образуя гелеобразные альбуминаты. Образование гелей убивает микробы и, кроме того, затрудняет проникновение их внутрь клеток тканей, что снижает местную воспалительную реакцию.
