- •Оглавление
- •Глава 1 16
- •Глава 2 химическая связь 33
- •Глава 3 54
- •Глава 4 82
- •Глава 5 110
- •Глава 6 141
- •Глава 7 173
- •Глава 8 196
- •Глава 9 234
- •Глава 10 комплексные соединения и их свойства 272
- •Глава 11 297
- •Глава 12 316
- •Глава 13 377
- •Глава 14 400
- •Глава 15 основные понятия органической химии 419
- •Глава 16 445
- •Глава 17 474
- •Глава 18 499
- •Глава 19 518
- •Глава 20 562
- •Глава 21 аминокислоты, пептиды и белки 578
- •Глава 22 620
- •Глава 23 651
- •Глава 24 692
- •Глава 25 709
- •Глава 26 740
- •Глава 27 771
- •От автора
- •Глава 1 строение атома, периодический закон и периодическая система элементов д. И. Менделеева
- •1.1. Строение атома
- •1.1.1. Квантовые числа
- •1.1.2. Принципы заполнения атомных орбиталей электронами
- •1.2. Периодический закон и периодическая система элементов д. И. Менделеева
- •1.3. Основные характеристики атомов элементов
- •1.3.1. Радиус атома
- •1.3.2. Энергия ионизации
- •1.3.3. Энергия сродства к электрону
- •1.3.4. Относительная электроотрицательность
- •Глава 2 химическая связь
- •2.1. Ковалентная связь
- •2.1.1. И молекулярные орбитали
- •2.1.2. Механизмы возникновения ковалентной связи
- •2.1.3. Особенности ковалентной связи
- •2.2. Ионная связь
- •2.3. Металлическая связь
- •Глава 3 межмолекулярные взаимодействия и агрегатное состояние вещества
- •3.1. Межмолекулярные взаимодействия
- •3.2. Агрегатное состояние вещества
- •3.2.1. Твердое состояние
- •3.2.2. Жидкое состояние
- •3.2.3. Жидкокристаллическое состояние
- •3.2.4. Паро- и газообразное состояния
- •Глава 4 основы химической термодинамики и биоэнергетики
- •4.1. Основные понятия термодинамики
- •4.2. Первый закон термодинамики
- •4.3. Понятие о самопроизвольных процессах.
- •4.4. Второй закон термодинамики. Энергия гиббса
- •4.5. Принцип энергетического сопряжения биохимических реакций
- •Г лава 5 основы кинетики биохимических реакций и химического равновесия
- •5.1. Основные понятия и терминология раздела
- •5.2. Факторы, влияющие на скорость гомогенных реакций
- •5.2.1. Влияние природы реагирующих веществ
- •5.2.2. Влияние концентрации реагентов.
- •5.2.3. Влияние температуры. Энергия активации
- •5.2.4. Влияние катализатора
- •5.3. Особенности кинетики гетерогенных реакций
- •5.4. Особенности кинетики цепных реакций
- •5.5. Химическое равновесие
- •5.5.1. Смещение химического равновесия
- •5.6. Ферментативный катализ и его особенности
- •5.7. Автоколебательные биохимические процессы
- •Г лава 6 растворы и их коллигативные свойства
- •6.1. Вода как растворитель и ее роль в жизнедеятельности организма
- •6.2. Термодинамика процесса растворения
- •6.З. Способы выражения концентрации растворов
- •6.4. Коллигативные свойства растворов
- •6.4.1. Диффузия
- •6.4.2. Осмос. Осмотическое и онкотическое давление
- •6.4.3. Давление насыщенного пара над раствором
- •6.4.4. Температура кипения и замерзания раствора
- •Глава 7 растворы электролитов и ионные равновесия
- •7.1. Электролитическая диссоциация
- •7.2. Равновесие в растворах слабых электролитов
- •7.2.1. Влияние общего иона и противоиона на равновесие
- •7.2.2. Взаимосвязь константы диссоциации и степени диссоциации
- •7.3. Особенности растворов сильных электролитов. Ионная сила раствора
- •7.4. Электролитическая диссоциация и ионное произведение воды
- •7.5. Водородный и гидроксильный показатели (рН и рОн)
- •7.6. Физико-химические основы водно-электролитного баланса в организме
- •Г лава 8 теория кислот и оснований и протолитические равновесия
- •8.1. Протолитическая теория кислот и оснований
- •8.2. Кислотно-основные свойства а-аминокислот
- •8.3. Важнейшие кислотно-основные реакции
- •8.3.1. Гидролиз солей
- •8.3.2. Реакции нейтрализации
- •8.3.3. Общая, активная и потенциальная кислотность растворов
- •8.4. Протолитический баланс. Буферные растворы и их свойства
- •8.5. Буферные системы организма, их взаимодействие, явления ацидоза и алкалоза
- •9.1. Основные понятия и факторы, влияющие на протекание окислительно-восстановительных реакций
- •9.2. Направление протекания окислительно-восстановительных реакций
- •9.3. Особенности биохимических окислительно-восстановительных процессов в организмах
- •9.3.1. Степень окисления углерода в органических соединениях
- •9.3.2. Биохимические реакции внутри- и межмолекулярной окислительно-восстановительной дисмутации за счет атомов углерода
- •9.3.3. Окислительно-восстановительные превращения кофакторов и коферментов оксидоредуктаз
- •9.3.4. Электронотранспортные цепи
- •9.3.5. Дегидрогеназное окисление-восстановление
- •9.3.6. Окислительное фосфорилирование
- •9.3.7. Фотофосфорилирование
- •9.3.8. Оксигеназное окисление-восстановление
- •9.3.9. Свободнорадикальное окисление и антиоксидантная система организма
- •9.4. Использование окислителей и восстановителей в медико-санитарной практике
- •Глава 10 комплексные соединения и их свойства
- •10.1. Основные понятия и терминология
- •10.2. Химическая связь в комплексных соединениях и особенности их строения
- •10.3. Химические свойства комплексных соединений
- •10.4. Медико-биологическая роль комплексных соединений
- •10.5. Металлолигандный баланс и его нарушения
- •10.6. Комплексонометрия
- •Глава 11 гетерогенные процессы и равновесия в растворах
- •11.1. Основные понятия и теоретические основы
- •11.2. Гетерогенные равновесия в растворах, связанные с процессом кристаллизации
- •11.3. Гетерогенные равновесия в растворах, связанные с процессом расслоения
- •11.4. Гетерогенные равновесия в живых системах
- •Глава 12 химия элементов-органогенов
- •12.2. Строение, химические свойства и роль элементов-органогенов и их соединений в растительном и животном мире
- •12.2.1. Водород и его соединения
- •12.2.2. Углерод и его соединения
- •12.2.3. Азот и его соединения
- •12.2.4. Фосфор и его соединения
- •12.2.5. Кислород и его соединения
- •12.2.6. Сера и ее соединения
- •12.3. Строение и химические свойства галогенов и их соединений
- •Глава 13 химия ионов металлов жизни и их роль в растительном и животном мире
- •13.1. Химия ионов s-металлов в организме
- •13.1.1. Натрий и калий
- •13.1.2. Магний и кальций
- •13.2. Химия ионов d-металлов в организме
- •13.2.1. Марганец
- •13.2.2. Железо и кобальт
- •13.2.3. Медь
- •13.2.4. Цинк
- •13.2.5. Молибден
- •Глава 14 химия и анализ загрязнений окружающей среды
- •14.1. Химия загрязнений атмосферы
- •14.1.1. Токсический смог
- •14.1.2. Фотохимический смог
- •14.1.3. Кислотные дожди
- •14.1.4. Загрязнение атмосферы другими токсикантами
- •14.1.5. Разрушение озонового слоя
- •14.2. Методы анализа токсикантов и методы снижения их поступления в атмосферу
- •14.3. Загрязнение гидросферы. Понятие об общих показателях, характеризующих природные и сточные воды
- •Глава 15 основные понятия органической химии
- •15.1. Основы классификации и номенклатуры органических соединений
- •15.2. Пространственная структура биоорганических молекул и виды изомерии
- •15.3. Понятие о взаимном влиянии атомов в молекуле и электронные эффекты
- •15.4. Классификация органических реакций и их компонентов
- •Г лава 16 алифатические и ароматические углеводороды
- •16.1. Строение и реакционная способность алканов
- •16.2. Строение и реакционная способность ненасыщенных углеводородов: алкенов и диенов
- •16.3. Ароматические углеводороды (арены)
- •Глава 17 спирты, фенолы, простые эфиры, тиолы и сульфиды
- •17.2. Физико-химические свойства спиртов и фенолов
- •17.3. Химические свойства спиртов
- •17.4. Химические свойства фенолов
- •17.5. Простые эфиры
- •17.6. Тиолы и сульфиды
- •Г лава 18 альдегиды, кетоны и их производные
- •18.1. Строение, номенклатура и физико-химические свойства альдегидов и кетонов
- •18.2. Химические свойства альдегидов и кетонов
- •18.2.1. Кислотно-основные свойства
- •18.2.2. Электрофильно-нуклеофильные свойства
- •18.2.3. Окислительно-восстановительные свойства
- •18.2.4. Комплексообразующие свойства
- •18.3. Альдегиды и кетоны в окружающей среде
- •Г лава 19 карбоновые кислоты и их функциональные производные
- •19.2. Химические свойства предельных кислот и их производных
- •19.2.1. Кислотно-основные свойства
- •19.2.2. Карбоновые кислоты как ацилирующие реагенты
- •19.2.3. Производные карбоновых кислот, их свойства и взаимные превращения
- •19.2.4. Окислительно-восстановительные свойства карбоновых кислот и их производных
- •19.3. Особенности свойств замещенных карбоновых кислот и их производных
- •19.3.1. Дикарбоновые кислоты
- •19.3.2. Гидроксикарбоновые кислоты
- •19.3.3. Оксокарбоновые кислоты
- •19.3.4. Ненасыщенные карбоновые кислоты
- •19.4. Основные реакции метаболизма карбоновых кислот
- •19.4.1. Биосинтез жирных кислот
- •1 9.4.2. Биологическое окисление жирных кислот
- •19.4.3. Реакции цикла кребса
- •19.5. Кислоты ароматического ряда и их производные как лекарственные средства
- •Г лава 20 Липиды
- •20.1. Жиры и воски
- •20.2. Омыляемые сложные липиды
- •20.3. Неомыляемые липиды - низкомолекулярные биорегуляторы
- •Глава 21 аминокислоты, пептиды и белки
- •21.1. Строение, классификация и физико-химические свойства а-аминокислот
- •21.2. Химические свойства а-аминокислот
- •21.2.1. Кислотно-основные свойства и прототропная таутомерия
- •21.2.2. К0мплекс00бразующие свойства
- •21.2.3. Электрофильно-нуклеофильные свойства
- •21.2.4. Окислительно-восстановительные свойства
- •21.3. Структура и свойства пептидов
- •21.4. Структура и свойства белков
- •Глава 22 углеводы и полисахариды
- •22.1. Строение, изомерия и свойства моносахаридов
- •22.1.1. Химические свойства моносахаридов и их производных
- •22.1.2. Катаболизм глюкозы - гликолиз
- •22.3. Полисахариды, их структура и свойства
- •22.3.1. Гомополисахариды
- •22.3.2. Гетерополисахариды, протеогликаны, гликопротеины
- •Г лава 23 биологически важные азотсодержащие соединения
- •23.1. Электронные состояния атома азота в его соединениях и свойства этих соединений
- •23.2. Роль аммиака для живых организмов и пути его обезвреживания. Цикл мочевины и ее свойства
- •23.3. Азотсодержащие ароматические гетероциклические соединения
- •23.4. Нуклеозиды, нуклеотиды и нуклеиновые кислоты, их структура и свойства
- •Г лава 24 электрохимия. Электрическая проводимость растворов электролитов
- •24.1. Электрическая подвижность ионов в растворе
- •24.2. Удельная электрическая проводимость растворов электролитов
- •24.3. Молярная электрическая проводимость растворов электролитов
- •24.4. Закон независимого движения ионов в разбавленных растворах (закон кольрауша)
- •24.5. Кондуктометрические методы анализа
- •24.5.1. Кондуктометрическое титрование
- •24.6. Электрическая проводимость биологических объектов в норме и патологии
- •Г лава 25 межфазные электрические потенциалы, гальванические цепи, потенциометрия
- •25.1. Возникновение двойного электрического слоя и виды электрических потенциалов
- •25.2. Электродный потенциал. Стандартный водородный электрод. Гальванические цепи. Уравнение нернста
- •25.3. Восстановительный потенциал
- •25.4. Диффузионный потенциал
- •25.5. Мембранный потенциал
- •25.6. Потенциометрия
- •25.6.1. Хлорсеребряный электрод сравнения
- •25.6.2. Ионо- и молекулярноселективные электроды определения
- •25.6.3. Потенциометрическое титрование
- •Глава 26 физико-химические основы поверхностных явлений
- •26.1. Свободная поверхностная энергия
- •26.2. Сорбция и ее виды
- •26.3. Абсорбция
- •26.4. Адсорбция
- •26.4.1. Адсорбция на неподвижной поверхности раздела фаз
- •26.4.2. Молекулярная адсорбция из растворов на твердых адсорбентах
- •26.4.3. Адсорбция ионов из растворов
- •26.4.4. Ионообменная адсорбция
- •26.5. Адсорбция на подвижной поверхности раздела фаз
- •26.6. Поверхностно-активные вещества
- •26.7. Хроматография
- •Глава 27 физикохимия дисперсных систем
- •27.2. Лиофобные коллоидные растворы
- •27.2.1. Строение мицелл в лиофобных коллоидных растворах
- •27.2.2. Свойства лиофобных коллоидных растворов
- •27.2.3. Влияние высокомолекулярных соединений на устойчивость лиофобных коллоидов. Флокуляция
- •27.3. Лиофильные коллоидные растворы
- •27.3.1. Строение мицелл пав и вмс в водных коллоидных растворах в зависимости от их концентрации
- •27. 3. 2. Получение и свойства лиофильных коллоидных растворов
- •27.3.3. Моющее действие растворов пав
- •27.3.4. Особенности растворов биополимеров
- •27.4. Структурообразование в растворах вмс. Возникновение связнодисперсных систем и их свойства
- •27.5. Грубодисперсные системы
- •27.5.1. Суспензии
- •27.5.2. Эмульсии
- •27.5.3. Аэрозоли
- •27.6. Электрокинетические явления в дисперсных системах
- •27.7. Ткани организма - дисперсные системы
- •27.7.1. Строение и свойства межклеточных мембран
- •27.7.2. Кровь - сложная дисперсная система
- •Приложение 1 применение осмолярной и осмоляльной концентраций в практической медицине
12.2. Строение, химические свойства и роль элементов-органогенов и их соединений в растительном и животном мире
Органогены - элементы, из атомов которых состоят основные компоненты живых систем: белки, жиры, углеводы, нуклеиновые кислоты и другие биологически активные соединения. Все органогены: Н, С, N, Р, О, S - являются неметаллами, причем элементы углерод, азот, фосфор, кислород и сера относятся p-элементам и только водород - к s-элементам. Обзор свойств органогенов и их соединений включает особенности строения их атомов и особенности образования химических связей с атомами других органогенов. Особое внимание будет уделено поведению соединений рассматриваемого элемента в кислотно-основных, окислительно-восстановительных и комплексообразовательных реакциях, а также их способности к образованию межмолекулярных ассоциатов. На основании этих свойств будет объяснена роль каждого органогена и его соединений в растительном и животном мире. Поскольку обсуждение химических свойств органогенов будет происходить с учетом их положения в периодической таблице, то кратко будут рассмотрены и свойства их электронных аналогов по группе, что поможет выявить зависимость химических свойств и биологической роли соединений различных элементов от свойств их атомов.
12.2.1. Водород и его соединения
Атом водорода по сравнению с атомами других элементов имеет простейшую структуру: он состоит из одного протона.
образующего атомное ядро, и одного электрона, расположенного на ls-орбитали. Уникальность атома водорода заключается в том, что его единственный валентный электрон находится непосредственно в поле действия ядра атома, поскольку он не экранируется другими электронами. Это обеспечивает ему специфические свойства. Он может в химических реакциях отдавать свой электрон, образуя катион Н+ (подобно атомам щелочных металлов), или присоединять электрон от партнера с образованием аниона Н- (подобно атомам галогенов). Поэтому водород в периодической системе помещают чаще в IA группе, иногда в VIIA группе, но встречаются варианты таблиц, где водород не принадлежит ни к одной из групп периодической таблицы.
Молекула водорода двухатомна - Н2. Водород - самый легкий из всех газов. Вследствие неполярности и большой прочности молекулы Н2 (Есв = 436 кДж/моль) при нормальных условиях водород активно взаимодействует только со фтором, а при освещении также с хлором и бромом. При нагревании реагирует со многими неметаллами, хлором, бромом, кислородом, серой, проявляя восстановительные свойства, а вступая во взаимодействие со щелочными и щелочноземельными металлами, является окислителем и образует гидриды этих металлов:
Среди всех органогенов у водорода наименьшая относительная электроотрицательность (0Э0 = 2,1), поэтому в природных соединениях водород всегда проявляет степень окисления +1. С позиции химической термодинамики водород в живых системах, содержащих воду, не может образовывать ни молекулярный водород (Н2), ни гидрид-ион (Н~). Молекулярный водород при обычных условиях химически малоактивен и при этом сильно летуч, из-за чего он не может удерживаться организмом и участвовать в обмене веществ. Гидрид-ион химически чрезвычайно активен и сразу взаимодействует даже с очень малым количеством воды с образованием молекулярного водорода. Поэтому водород в организме находится или в виде соединений с другими органогенами, или в виде катиона Н+.
Водород с элементами-органогенами образует только ковалентные связи. По степени полярности эти связи располагаются в следующий ряд:
Э
тот
ряд очень важен для химии природных
соединений, так как полярность этих
связей и их поляризуемость предопределяют
кислотные свойства соединений, т. е.
диссоциацию с образованием протона.
Кислотные свойства. В зависимости от природы элемента, образующего связь Х-Н, выделяют 4 типа кислот:
ОН-кислоты (карбоновые кислоты, фенолы, спирты);
SH-кислоты (тиолы);
NH-кислоты (амиды, имиды, амины);
СН-кислоты (углеводороды и их производные).
С учетом высокой поляризуемости связи S—Н можно составить следующий ряд кислот по способности к диссоциации:
Концентрация катионов водорода в водной среде определяет ее кислотность, которая выражается с помощью водородного показателя рН = -lg[H+] (разд. 7.5). Большинство физиологических сред организма имеет реакцию, близкую к нейтральной (рН = 5,0-7,5), только у желудочного сока рН = 1,0-2,0. Это обеспечивает, с одной стороны, противомикробное действие, убивая многие микроорганизмы, занесенные в желудок с пищей; с другой стороны, кислая среда оказывает каталитическое действие при гидролизе белков, полисахаридов и других биосубстратов, способствуя получению необходимых метаболитов.
Окислительно-восстановительные свойства. Вследствие большой плотности положительного заряда катион водорода является довольно сильным окислителем (ф° = 0 В), окисляя активные и средней активности металлы при взаимодействии с кислотами и водой:
В
живых системах таких сильных восстановителей
нет, а окислительная способность катионов
водорода в нейтральной среде (рН = 7)
значительно понижена (ф° = -0,42 В). Поэтому
в организме катион водорода не проявляет
окислительных свойств, но активно
участвует в окислительно-восстановительных
реакциях, способствуя превращению
исходных веществ в продукты реакции:
Во всех приведенных примерах атомы водорода своей степени окисления +1 не изменили.
Восстановительные свойства характерны для молекулярного и особенно для атомарного водорода, т. е. водорода в момент ныделения непосредственно в реакционной среде, а также для гидрид-иона:
Однако в живых системах таких восстановителей (Н2 или Н-) нет, и поэтому нет подобных реакций. Встречающееся в литературе, в том числе и в учебниках, мнение, что водород является носителем восстановительных свойств органических соединений, не соответствует действительности; так, в живых системах восстановителем биосубстратов выступает восстановленная форма кофермента дегидрогеназы, в которой донором электронов являются атомы углерода, а не атомы водорода (разд. 9.3.3).
Комплексообразующие
свойства. Вследствие
наличия у катиона водорода свободной
атомной орбитали и высокого поляризующего
действия самого катиона Н+
он является активным ионом-комплексообразователем.
Так, в водной среде катион водорода
образует ион гидроксония Н3О+,
а при наличии аммиака -ион аммония NH4:
Склонность
к образованию ассоциатов. Атомы
водорода сильнополярных связей О—Н
и N-—Н
образуют водородные связи (разд. 3.1).
Прочность водородной связи (от 10 до 100
кДж/моль) зависит от величины локализованных
зарядов
и
длины водородной связи, т. е. от расстояния
между атомами электроотрицательных
элементов, участвующих в ее образовании.
Для аминокислот, углеводов, белков,
нуклеиновых кислот характерны
следующие длины водородных связей, пм:
Благодаря водородным связям возникают обратимые межмолекулярные взаимодействия между субстратом и ферментом, между отдельными группами в природных полимерах, определяющие их вторичную, третичную и четвертичную структуру (разд. 21.4, 23.4). Ведущую роль водородная связь играет в свойствах воды как растворителя и реагента.
Вода и ее свойства. Вода - важнейшее соединение водорода. Все химические реакции в организме протекают только в водной среде, жизнь без воды невозможна. Вода как растворитель рассматривалась в разд. 6.1.
Кислотно-основные свойства. Вода как реагент с позиции кислотно-основных свойств является истинным амфолитом (разд. 8.1). Это проявляется и при гидролизе солей (разд. 8.3.1), и при диссоциации кислот и оснований в водной среде (разд. 8.3.2).
Количественной характеристикой кислотности водных сред является водородный показатель рН.
Вода как кислотно-основной реагент участвует в реакциях гидролиза биосубстратов. Например, гидролиз аденозинтрифосфата служит источником запасенной энергии для организма, ферментативный гидролиз ненужных белков служит для получения аминокислот, являющихся исходным материалом для синтеза необходимых белков. При этом катионы Н+ или анионы ОН- являются кислотно-основными катализаторами реакций гидролиза биосубстратов (разд. 21.4, 23.4).
Окислительно-восстановительные свойства. В молекуле воды и водород, и кислород находятся в устойчивых степенях окисления. Поэтому вода не проявляет ярко выраженных окислительно-восстановительных свойств. Окислительно-восстановительные реакции возможны при взаимодействии воды только с очень активными восстановителями или очень активными окислителями, или в условиях сильной активации реагентов.
Вода может быть окислителем за счет катионов водорода при взаимодействии с сильными восстановителями, например щелочными и щелочноземельными металлами или их гидридами:
При высоких температурах возможно взаимодействие воды с менее активными восстановителями:
В живых системах их компонент вода никогда не выступает как окислитель, поскольку это привело бы к уничтожению этих систем из-за образования и необратимого удаления молекулярного водорода из организмов.
Вода
может выступать в роли восстановителя
за счет атомов кислорода
например
при взаимодействии с таким сильнейшим
окислителем, как фтор:
Под действием света и при участии хлорофилла в растениях протекает процесс фотосинтеза с образованием О2 из воды (разд. 9.3.6):
Кроме
непосредственного участия в
окислительно-восстановительных
превращениях вода и продукты ее
диссоциации Н+
и
ОН- принимают участие как среда, которая
способствует протеканию многих
окислительно-восстановительных реакций
вследствие ее высокой полярности (
= 79) и участия образуемых ею ионов в
превращениях исходных веществ в конечные
(разд. 9.1).
Комплексообразующие свойства. Молекула воды из-за наличия у атома кислорода двух неподеленных электронных пар является достаточно активным монодентатным лигандом, который с катионом водорода образует комплексный ион оксония Н30+, а с катионами металлов в водных растворах -достаточно устойчивые аквакомплексы, например [Са(Н20)6]2+, [ Fe(H20)6]3+, [Cu(H20)4]2+. В этих комплексных ионах молекулы ноды ковалентно связаны с комплексообразователями достаточно прочно. Катионы щелочных металлов аквакомплексов не образуют, а за счет электростатических сил образуют гидратированные катионы. Время оседлой жизни молекул воды в гидратных оболочках этих катионов не превышает 0,1 с, а их состав по числу молекул воды может легко изменяться.
Склонность к образованию ассоциатов. Вследствие большой полярности, способствующей электростатическому взаимодействию и образованию водородных связей, молекулы воды даже в чистой воде (разд. 6.1) образуют межмолекулярные ассоциаты, различающиеся по структуре, числу молекул и времени их оседлой жизни в ассоциатах, а также времени жизни самих ассоциатов. Таким образом, чистая вода является открытой сложной динамической системой. Под действием внешних факторов: радиоактивное, ультрафиолетовое и лазерное излучения, упругие волны, температура, давление, электрические, магнитные и электромагнитные поля от искусственных и естественных источников (космос, Солнце, Земля, живые объекты) - вода изменяет свои структурно-информационные свойства, а следовательно, изменяются ее биологические и физиологические функции.
Кроме самоассоциации молекулы воды гидратируют ионы, полярные молекулы и макромолекулы, образуя вокруг них гидратные оболочки, тем самым стабилизируют их в растворе и способствуют их растворению (разд. 6.1). Вещества, молекулы которых неполярны и имеют относительно небольшие размеры, способны только незначительно растворяться в воде, заполняя пустоты ее ассоциатов с определенной структурой. При этом в результате гидрофобного взаимодействия неполярные молекулы структурируют окружающую их гидратную оболочку, превращая ее в структурированный ассоциат, обычно с льдоподобной структурой, внутри которого расположена данная неполярная молекула.
В живых организмах можно выделить две категории воды -"связанную" и "свободную", последняя, по-видимому, есть только в межклеточной жидкости (разд. 6.1). Связанная вода, в свою очередь, подразделяется на "структурированную" (прочносвязанную) и "деструктурированную" (слабосвязанную или рыхлую) воду. Вероятно, все перечисленные выше внешние факторы влияют на состояние воды в организме, изменяя соотношения: "структурированная"/ "деструктурированная" и "связанная"/ "свободная" вода, а также ее структурно-динамические параметры. Это проявляется в изменениях физиологического состояния организма. Не исключено, что внутриклеточная вода непрерывно претерпевает регулируемые, в основном белками, пульсационные переходы из "структурированного" в "деструктурированное" состояние. Эти переходы взаимосвязаны с выталкиванием из клетки отслуживших метаболитов (шлаков) и всасыванием необходимых веществ. С современной точки зрения вода участвует в формировании единой внутриклеточной структуры, благодаря которой достигается упорядоченность процессов жизнедеятельности. Поэтому, по образному выражению А. Сент-Дьёрдьи, вода в организме является "матрицей жизни".
Вода в природе. Вода - самое важное и распространенное вещество на Земле. Поверхность земного шара на 75 % покрыта водой. Объем Мирового океана составляет 1,4 млрд. км3. Столько же воды находится в минералах в виде кристаллизационной воды. Атмосфера содержит 13 тыс. км3 воды. В то же время запасы пресной воды, пригодной для питья и бытовых нужд, довольно ограничены (объем всех пресноводных водоемов составляет 200 тыс. км3). Пресная вода, употребляемая в быту, содержит различные примеси от 0,05 до 1 г/л, чаще всего это соли: гидрокарбонаты, хлориды, сульфаты, - в том числе растворимые соли кальция и магния, присутствие которых делает воду жесткой (разд. 14.3). В настоящее время охрана водных ресурсов и очистка сточных вод являются наиболее актуальными экологическими проблемами.
В обычной воде присутствует около 0,02 % тяжелой воды D2O (D - дейтерий). Она накапливается при испарении или электролизе обычной воды. Тяжелая вода токсична. Тяжелую воду применяют для изучения движения воды в живых организмах. С ее помощью установлено, что скорость движения воды в тканях некоторых растений достигает 14 м/ч, а вода, выпитая человеком, за 2 ч полностью распределяется по его органам и тканям и лишь через две недели полностью выводится из организма. Живые организмы содержат от 50 до 93 % воды, которая является непременным участником всех процессов жизнедеятельности. Без воды жизнь невозможна. При продолжительности жизни 70 лет человек с пищей и питьем потребляет около 70 т воды.
В научной и медицинской практике широко используется дистиллированная вода - бесцветная прозрачная жидкость без запаха и вкуса, рН = 5,2-6,8. Это фармакопейный препарат для приготовления многих лекарственных форм.
Вода для инъекций (апирогенная вода) - также фармакопейный препарат. Эта вода не содержит пирогенных веществ. Пирогены - вещества бактериального происхождения - метаболиты или продукты жизнедеятельности бактерий, которые, попадая в организм, вызывают озноб, повышение температуры тела, головные боли, нарушение сердечно-сосудистой деятельности. Приготавливают апирогенную воду двойной перегонкой ноды (бидистиллят) с соблюдением асептических условий и используют в течение 24 ч.
Заканчивая раздел, необходимо подчеркнуть особенности водорода как биогенного элемента. В живых системах водород всегда проявляет степень окисления +1 и встречается или связанным полярной ковалентной связью с другими биогенными элементами, или в виде катиона Н+. Катион водорода является носителем кислотных свойств и активным комплексообразователем, взаимодействующим со свободными электронными парами атомов других органогенов. С позиции окислительно-восстановительных свойств связанный водород в условиях организма не проявляет свойств ни окислителя, ни восстановителя, однако катион водорода активно участвует во многих окислительно-восстановительных реакциях, не изменяя при этом своей степени окисления, но способствуя превращению биосубстратов в продукты реакции. Водород, связанный с электроотрицательными элементами, образует водородные связи.
