- •Оглавление
- •Глава 1 16
- •Глава 2 химическая связь 33
- •Глава 3 54
- •Глава 4 82
- •Глава 5 110
- •Глава 6 141
- •Глава 7 173
- •Глава 8 196
- •Глава 9 234
- •Глава 10 комплексные соединения и их свойства 272
- •Глава 11 297
- •Глава 12 316
- •Глава 13 377
- •Глава 14 400
- •Глава 15 основные понятия органической химии 419
- •Глава 16 445
- •Глава 17 474
- •Глава 18 499
- •Глава 19 518
- •Глава 20 562
- •Глава 21 аминокислоты, пептиды и белки 578
- •Глава 22 620
- •Глава 23 651
- •Глава 24 692
- •Глава 25 709
- •Глава 26 740
- •Глава 27 771
- •От автора
- •Глава 1 строение атома, периодический закон и периодическая система элементов д. И. Менделеева
- •1.1. Строение атома
- •1.1.1. Квантовые числа
- •1.1.2. Принципы заполнения атомных орбиталей электронами
- •1.2. Периодический закон и периодическая система элементов д. И. Менделеева
- •1.3. Основные характеристики атомов элементов
- •1.3.1. Радиус атома
- •1.3.2. Энергия ионизации
- •1.3.3. Энергия сродства к электрону
- •1.3.4. Относительная электроотрицательность
- •Глава 2 химическая связь
- •2.1. Ковалентная связь
- •2.1.1. И молекулярные орбитали
- •2.1.2. Механизмы возникновения ковалентной связи
- •2.1.3. Особенности ковалентной связи
- •2.2. Ионная связь
- •2.3. Металлическая связь
- •Глава 3 межмолекулярные взаимодействия и агрегатное состояние вещества
- •3.1. Межмолекулярные взаимодействия
- •3.2. Агрегатное состояние вещества
- •3.2.1. Твердое состояние
- •3.2.2. Жидкое состояние
- •3.2.3. Жидкокристаллическое состояние
- •3.2.4. Паро- и газообразное состояния
- •Глава 4 основы химической термодинамики и биоэнергетики
- •4.1. Основные понятия термодинамики
- •4.2. Первый закон термодинамики
- •4.3. Понятие о самопроизвольных процессах.
- •4.4. Второй закон термодинамики. Энергия гиббса
- •4.5. Принцип энергетического сопряжения биохимических реакций
- •Г лава 5 основы кинетики биохимических реакций и химического равновесия
- •5.1. Основные понятия и терминология раздела
- •5.2. Факторы, влияющие на скорость гомогенных реакций
- •5.2.1. Влияние природы реагирующих веществ
- •5.2.2. Влияние концентрации реагентов.
- •5.2.3. Влияние температуры. Энергия активации
- •5.2.4. Влияние катализатора
- •5.3. Особенности кинетики гетерогенных реакций
- •5.4. Особенности кинетики цепных реакций
- •5.5. Химическое равновесие
- •5.5.1. Смещение химического равновесия
- •5.6. Ферментативный катализ и его особенности
- •5.7. Автоколебательные биохимические процессы
- •Г лава 6 растворы и их коллигативные свойства
- •6.1. Вода как растворитель и ее роль в жизнедеятельности организма
- •6.2. Термодинамика процесса растворения
- •6.З. Способы выражения концентрации растворов
- •6.4. Коллигативные свойства растворов
- •6.4.1. Диффузия
- •6.4.2. Осмос. Осмотическое и онкотическое давление
- •6.4.3. Давление насыщенного пара над раствором
- •6.4.4. Температура кипения и замерзания раствора
- •Глава 7 растворы электролитов и ионные равновесия
- •7.1. Электролитическая диссоциация
- •7.2. Равновесие в растворах слабых электролитов
- •7.2.1. Влияние общего иона и противоиона на равновесие
- •7.2.2. Взаимосвязь константы диссоциации и степени диссоциации
- •7.3. Особенности растворов сильных электролитов. Ионная сила раствора
- •7.4. Электролитическая диссоциация и ионное произведение воды
- •7.5. Водородный и гидроксильный показатели (рН и рОн)
- •7.6. Физико-химические основы водно-электролитного баланса в организме
- •Г лава 8 теория кислот и оснований и протолитические равновесия
- •8.1. Протолитическая теория кислот и оснований
- •8.2. Кислотно-основные свойства а-аминокислот
- •8.3. Важнейшие кислотно-основные реакции
- •8.3.1. Гидролиз солей
- •8.3.2. Реакции нейтрализации
- •8.3.3. Общая, активная и потенциальная кислотность растворов
- •8.4. Протолитический баланс. Буферные растворы и их свойства
- •8.5. Буферные системы организма, их взаимодействие, явления ацидоза и алкалоза
- •9.1. Основные понятия и факторы, влияющие на протекание окислительно-восстановительных реакций
- •9.2. Направление протекания окислительно-восстановительных реакций
- •9.3. Особенности биохимических окислительно-восстановительных процессов в организмах
- •9.3.1. Степень окисления углерода в органических соединениях
- •9.3.2. Биохимические реакции внутри- и межмолекулярной окислительно-восстановительной дисмутации за счет атомов углерода
- •9.3.3. Окислительно-восстановительные превращения кофакторов и коферментов оксидоредуктаз
- •9.3.4. Электронотранспортные цепи
- •9.3.5. Дегидрогеназное окисление-восстановление
- •9.3.6. Окислительное фосфорилирование
- •9.3.7. Фотофосфорилирование
- •9.3.8. Оксигеназное окисление-восстановление
- •9.3.9. Свободнорадикальное окисление и антиоксидантная система организма
- •9.4. Использование окислителей и восстановителей в медико-санитарной практике
- •Глава 10 комплексные соединения и их свойства
- •10.1. Основные понятия и терминология
- •10.2. Химическая связь в комплексных соединениях и особенности их строения
- •10.3. Химические свойства комплексных соединений
- •10.4. Медико-биологическая роль комплексных соединений
- •10.5. Металлолигандный баланс и его нарушения
- •10.6. Комплексонометрия
- •Глава 11 гетерогенные процессы и равновесия в растворах
- •11.1. Основные понятия и теоретические основы
- •11.2. Гетерогенные равновесия в растворах, связанные с процессом кристаллизации
- •11.3. Гетерогенные равновесия в растворах, связанные с процессом расслоения
- •11.4. Гетерогенные равновесия в живых системах
- •Глава 12 химия элементов-органогенов
- •12.2. Строение, химические свойства и роль элементов-органогенов и их соединений в растительном и животном мире
- •12.2.1. Водород и его соединения
- •12.2.2. Углерод и его соединения
- •12.2.3. Азот и его соединения
- •12.2.4. Фосфор и его соединения
- •12.2.5. Кислород и его соединения
- •12.2.6. Сера и ее соединения
- •12.3. Строение и химические свойства галогенов и их соединений
- •Глава 13 химия ионов металлов жизни и их роль в растительном и животном мире
- •13.1. Химия ионов s-металлов в организме
- •13.1.1. Натрий и калий
- •13.1.2. Магний и кальций
- •13.2. Химия ионов d-металлов в организме
- •13.2.1. Марганец
- •13.2.2. Железо и кобальт
- •13.2.3. Медь
- •13.2.4. Цинк
- •13.2.5. Молибден
- •Глава 14 химия и анализ загрязнений окружающей среды
- •14.1. Химия загрязнений атмосферы
- •14.1.1. Токсический смог
- •14.1.2. Фотохимический смог
- •14.1.3. Кислотные дожди
- •14.1.4. Загрязнение атмосферы другими токсикантами
- •14.1.5. Разрушение озонового слоя
- •14.2. Методы анализа токсикантов и методы снижения их поступления в атмосферу
- •14.3. Загрязнение гидросферы. Понятие об общих показателях, характеризующих природные и сточные воды
- •Глава 15 основные понятия органической химии
- •15.1. Основы классификации и номенклатуры органических соединений
- •15.2. Пространственная структура биоорганических молекул и виды изомерии
- •15.3. Понятие о взаимном влиянии атомов в молекуле и электронные эффекты
- •15.4. Классификация органических реакций и их компонентов
- •Г лава 16 алифатические и ароматические углеводороды
- •16.1. Строение и реакционная способность алканов
- •16.2. Строение и реакционная способность ненасыщенных углеводородов: алкенов и диенов
- •16.3. Ароматические углеводороды (арены)
- •Глава 17 спирты, фенолы, простые эфиры, тиолы и сульфиды
- •17.2. Физико-химические свойства спиртов и фенолов
- •17.3. Химические свойства спиртов
- •17.4. Химические свойства фенолов
- •17.5. Простые эфиры
- •17.6. Тиолы и сульфиды
- •Г лава 18 альдегиды, кетоны и их производные
- •18.1. Строение, номенклатура и физико-химические свойства альдегидов и кетонов
- •18.2. Химические свойства альдегидов и кетонов
- •18.2.1. Кислотно-основные свойства
- •18.2.2. Электрофильно-нуклеофильные свойства
- •18.2.3. Окислительно-восстановительные свойства
- •18.2.4. Комплексообразующие свойства
- •18.3. Альдегиды и кетоны в окружающей среде
- •Г лава 19 карбоновые кислоты и их функциональные производные
- •19.2. Химические свойства предельных кислот и их производных
- •19.2.1. Кислотно-основные свойства
- •19.2.2. Карбоновые кислоты как ацилирующие реагенты
- •19.2.3. Производные карбоновых кислот, их свойства и взаимные превращения
- •19.2.4. Окислительно-восстановительные свойства карбоновых кислот и их производных
- •19.3. Особенности свойств замещенных карбоновых кислот и их производных
- •19.3.1. Дикарбоновые кислоты
- •19.3.2. Гидроксикарбоновые кислоты
- •19.3.3. Оксокарбоновые кислоты
- •19.3.4. Ненасыщенные карбоновые кислоты
- •19.4. Основные реакции метаболизма карбоновых кислот
- •19.4.1. Биосинтез жирных кислот
- •1 9.4.2. Биологическое окисление жирных кислот
- •19.4.3. Реакции цикла кребса
- •19.5. Кислоты ароматического ряда и их производные как лекарственные средства
- •Г лава 20 Липиды
- •20.1. Жиры и воски
- •20.2. Омыляемые сложные липиды
- •20.3. Неомыляемые липиды - низкомолекулярные биорегуляторы
- •Глава 21 аминокислоты, пептиды и белки
- •21.1. Строение, классификация и физико-химические свойства а-аминокислот
- •21.2. Химические свойства а-аминокислот
- •21.2.1. Кислотно-основные свойства и прототропная таутомерия
- •21.2.2. К0мплекс00бразующие свойства
- •21.2.3. Электрофильно-нуклеофильные свойства
- •21.2.4. Окислительно-восстановительные свойства
- •21.3. Структура и свойства пептидов
- •21.4. Структура и свойства белков
- •Глава 22 углеводы и полисахариды
- •22.1. Строение, изомерия и свойства моносахаридов
- •22.1.1. Химические свойства моносахаридов и их производных
- •22.1.2. Катаболизм глюкозы - гликолиз
- •22.3. Полисахариды, их структура и свойства
- •22.3.1. Гомополисахариды
- •22.3.2. Гетерополисахариды, протеогликаны, гликопротеины
- •Г лава 23 биологически важные азотсодержащие соединения
- •23.1. Электронные состояния атома азота в его соединениях и свойства этих соединений
- •23.2. Роль аммиака для живых организмов и пути его обезвреживания. Цикл мочевины и ее свойства
- •23.3. Азотсодержащие ароматические гетероциклические соединения
- •23.4. Нуклеозиды, нуклеотиды и нуклеиновые кислоты, их структура и свойства
- •Г лава 24 электрохимия. Электрическая проводимость растворов электролитов
- •24.1. Электрическая подвижность ионов в растворе
- •24.2. Удельная электрическая проводимость растворов электролитов
- •24.3. Молярная электрическая проводимость растворов электролитов
- •24.4. Закон независимого движения ионов в разбавленных растворах (закон кольрауша)
- •24.5. Кондуктометрические методы анализа
- •24.5.1. Кондуктометрическое титрование
- •24.6. Электрическая проводимость биологических объектов в норме и патологии
- •Г лава 25 межфазные электрические потенциалы, гальванические цепи, потенциометрия
- •25.1. Возникновение двойного электрического слоя и виды электрических потенциалов
- •25.2. Электродный потенциал. Стандартный водородный электрод. Гальванические цепи. Уравнение нернста
- •25.3. Восстановительный потенциал
- •25.4. Диффузионный потенциал
- •25.5. Мембранный потенциал
- •25.6. Потенциометрия
- •25.6.1. Хлорсеребряный электрод сравнения
- •25.6.2. Ионо- и молекулярноселективные электроды определения
- •25.6.3. Потенциометрическое титрование
- •Глава 26 физико-химические основы поверхностных явлений
- •26.1. Свободная поверхностная энергия
- •26.2. Сорбция и ее виды
- •26.3. Абсорбция
- •26.4. Адсорбция
- •26.4.1. Адсорбция на неподвижной поверхности раздела фаз
- •26.4.2. Молекулярная адсорбция из растворов на твердых адсорбентах
- •26.4.3. Адсорбция ионов из растворов
- •26.4.4. Ионообменная адсорбция
- •26.5. Адсорбция на подвижной поверхности раздела фаз
- •26.6. Поверхностно-активные вещества
- •26.7. Хроматография
- •Глава 27 физикохимия дисперсных систем
- •27.2. Лиофобные коллоидные растворы
- •27.2.1. Строение мицелл в лиофобных коллоидных растворах
- •27.2.2. Свойства лиофобных коллоидных растворов
- •27.2.3. Влияние высокомолекулярных соединений на устойчивость лиофобных коллоидов. Флокуляция
- •27.3. Лиофильные коллоидные растворы
- •27.3.1. Строение мицелл пав и вмс в водных коллоидных растворах в зависимости от их концентрации
- •27. 3. 2. Получение и свойства лиофильных коллоидных растворов
- •27.3.3. Моющее действие растворов пав
- •27.3.4. Особенности растворов биополимеров
- •27.4. Структурообразование в растворах вмс. Возникновение связнодисперсных систем и их свойства
- •27.5. Грубодисперсные системы
- •27.5.1. Суспензии
- •27.5.2. Эмульсии
- •27.5.3. Аэрозоли
- •27.6. Электрокинетические явления в дисперсных системах
- •27.7. Ткани организма - дисперсные системы
- •27.7.1. Строение и свойства межклеточных мембран
- •27.7.2. Кровь - сложная дисперсная система
- •Приложение 1 применение осмолярной и осмоляльной концентраций в практической медицине
8.4. Протолитический баланс. Буферные растворы и их свойства
Одним из важнейших факторов общего гомеостаза живых организмов является поддержание кислотно-щелочного, т. е. протолитического, баланса на необходимом уровне. Это выражается в достаточно постоянных значениях рН биологических сред и в способности восстанавливать рН при поступлении в эти среды кислот и оснований. В результате жизнедеятельности в организме образуется большое количество кислот. Больше всего при метаболизме возникает углекислоты (до 13 моль ежесуточно), которая в основном выводится из организма при дыхании в виде оксида углерода(4). Задержка или нарушение выделения углекислоты из организма приводит к серьезным патологиям, так как согласно расчетам для нарушения кислотно-основного баланса у человека достаточно задержки в организме всего 0,15 моль кислоты.
Помимо угольной кислоты в организме образуются нелетучие кислоты (серная, фосфорная, молочная и др.) в количестве 0,03-0,08 моль/сут. При вегетарианском питании кислот образуется меньше, а при употреблении продуктов животного происхождения - больше. При некоторых патологических процессах, например при диабете, нелетучих кислот образуется значительное количество (до 1 моль/сут), причем в основном это ацетоуксусная и Р-оксимасляная кислоты. Возникающее при диабете нарушение протолитического баланса может угрожать жизни больного. От кислот организм освобождается благодаря физиологическим процессам: дыханию (от летучей кислоты СО2) и мочевыделению (в основном, от нелетучих кислот).
Роль оснований в организме обычно выполняют различные азотистые основания, включая аммиак, которые образуются в результате метаболизма аминокислот и белков. Эти основания или используются в процессах дальнейшего метаболизма, или выводятся из организма через почки.
С помощью физиологических процессов кислоты и основания выводятся из организма медленно, а быстрая их нейтрализация и поддержание рН жидких сред на необходимом уровне осуществляется за счет физико-химических процессов, среди которых прежде всего следует отметить протолитическое равновесие в буферных системах. Для понимания работы этих систем рассмотрим состав и механизм действия буферных растворов.
Буферные растворы. Большинство биожидкостей организма способно сохранять значение рН при незначительных внешних воздействиях, так как они являются буферными растворами.
Буферный раствор - это раствор, содержащий протолитическую равновесную систему, способную поддерживать практически постоянное значение рН при разбавлении или при добавлении небольших количеств кислоты или щелочи.
В протолитических буферных растворах компонентами являются донор протона и акцептор протона, представляющие собой сопряженную кислотно-основную пару. В качестве донора протона выступает слабая кислота (СН3СООН, Н2СО3) или сопряженная кислота слабого основания (NН4+). Акцептором протона в первом случае является анион слабой кислоты (СНзСОО-, НСОз), а во втором - слабое основание (NH3 • Н2О). Состав протолитической буферной системы выражают формулами ее компонентов, причем вначале указывают формулу акцептора протона, а затем - донора протона, разделяя их запятой. Например, буферные системы: ацетатная – СНзСОО-, СН3СООН; гидрокарбонатная - НСО3-, Н2СО3; аммиачная - NH3 * Н2О, NH4+. По принадлежности слабого электролита к классу кислот или оснований буферные системы делятся на кислотные и основные.
Кислотными буферными системами называются растворы, содержащие слабую кислоту (донор протона) и соль этой кислоты (акцептор протона).
Кислотные буферные растворы могут содержать различные системы: ацетатную (СН3СОО-, СН3СООН), гидрокарбонатную (НС03-, Н2С03), гидрофосфатную (НРO42-, Н2РO4-). В кислотной буферной системе всегда наблюдается два процесса: один обратимый - диссоциация слабого протолита:
другой необратимый - диссоциация соли:
В результате этих процессов образуется акцептор протона ацетат-ион (СН3СОО-), концентрация которого в растворе определяется в основном концентрацией соли CH3COONa, так как образование аниона за счет диссоциации слабой кислоты в присутствии ее соли всегда очень незначительно. Поскольку концентрация ацетатиона, акцептора протона, определяется концентрацией соли, то в соответствии с уравнением Гендерсона -Хассельбаха рН кислотной буферной системы зависит от показателя константы диссоциации слабой кислоты рКа и отношения концентраций акцептора протона (соли) и донора протона (кислоты) в растворе:
Основными буферными растворами называются растворы, содержащие слабое основание (акцептор протона) и соль этого основания (донор протона).
Примером основного буферного раствора является водный раствор, содержащий систему из слабого основания NH3 • Н20 и его соли NH4C1. В основной буферной системе также протекают два процесса:
К
онцентрация
катионов NH4+
(доноров протона) в аммиачном буфере
определяется в основном концентрацией
соли (NH4C1).
Величина рН основного буферного раствора,
согласно уравнению Гендерсона -
Хассельбаха, зависит от величины рK0(ВН+)
сопряженной кислоты данного основания
и отношения концентраций основания
и его соли в растворе:
Механизм буферного действия. При разбавлении буферных растворов концентрации всех компонентов уменьшаются. Но так как они изменяются одинаково, то их отношение остается неизменным. Величина константы диссоциации слабого электролита также не изменяется при разведении. Поэтому рН буферного раствора, согласно уравнению Гендерсона - Хассельбаха, при разбавлении не меняется. В действительности это наблюдается до тех пор, пока концентрация компонентов буферных растворов не станет меньше 0,01 моль/л.
Добавление небольших количеств сильной кислоты или щелочи в буферный раствор моментально вызывает защитную реакцию протолитической буферной системы по поддержанию постоянного значения рН среды. Это происходит за счет связывания добавляемых ионов Н+ или ОН- соответствующими компонентами буферной системы с образованием малодиссоциирующих соединений. Катионы Н+ связываются акцептором протона буферной системы:
Защитные свойства буферных растворов по отношению к действию кислот и щелочей будут сохраняться до тех пор, пока концентрации компонентов буферных систем, связывающих Н+ или ОН , будут больше концентрации добавляемых ионов:
Установлено, что достаточное буферное действие наблюдается, если концентрация одного из компонентов превышает концентрацию другого не более чем в 10 раз:
Таким
образом, на основании одного слабого
электролита можно приготовить буферные
растворы, поддерживающие значение
рН в относительно узком диапазоне от
до
Буферная емкость. Протолитические буферные растворы способны поддерживать значение рН среды на определенном уровне только при добавлении к ним небольших количеств кислоты или щелочи. Для количественной характеристики этой сопротивляемости буферных растворов к добавлению кислот и оснований введено понятие буферная емкость.
Буферной емкостью (В) называется число моль-эквивалентов сильной кислоты или щелочи, которые нужно добавить к 1 литру буферного раствора, чтобы изменить величину рН на единицу.
Различают буферную емкость по кислоте Ва и буферную емкость по основанию Вb, которые рассчитываются с помощью уравнений:
где с(1/z к-ты) и Ук_ты - молярная концентрация эквивалентов и объем добавленной сильной кислоты; с( 1/z щел) и Vщел - молярная концентрация эквивалентов и объем добавленной щелочи; ДрН - сдвиг водородного показателя буферного раствора, вызванный добавлением сильной кислоты (щелочи); Vбуф. р-ра - исходный объем буферного раствора.
Буферная емкость зависит от концентраций компонентов в буферном растворе и их отношения. Чем выше концентрация компонентов, тем больше буферная емкость. Кислотная буферная емкость определяется концентрацией буферного основания, т. е. концентрацией акцептора протона: Ва = f/([акцептор протона]). Основная буферная емкость определяется концентрацией буферной кислоты, т. е. концентрацией донора протона: Вb = = f([донор протона]). При разбавлении буферного раствора величина буферной емкости уменьшается вследствие снижения концентрации всех компонентов раствора.
При
одинаковой суммарной концентрации
компонентов буферная емкость достигает
максимального значения при равенстве
их концентраций: (донор протона) =
[акцептор протона], причем в этом случае
