- •Оглавление
- •Глава 1 16
- •Глава 2 химическая связь 33
- •Глава 3 54
- •Глава 4 82
- •Глава 5 110
- •Глава 6 141
- •Глава 7 173
- •Глава 8 196
- •Глава 9 234
- •Глава 10 комплексные соединения и их свойства 272
- •Глава 11 297
- •Глава 12 316
- •Глава 13 377
- •Глава 14 400
- •Глава 15 основные понятия органической химии 419
- •Глава 16 445
- •Глава 17 474
- •Глава 18 499
- •Глава 19 518
- •Глава 20 562
- •Глава 21 аминокислоты, пептиды и белки 578
- •Глава 22 620
- •Глава 23 651
- •Глава 24 692
- •Глава 25 709
- •Глава 26 740
- •Глава 27 771
- •От автора
- •Глава 1 строение атома, периодический закон и периодическая система элементов д. И. Менделеева
- •1.1. Строение атома
- •1.1.1. Квантовые числа
- •1.1.2. Принципы заполнения атомных орбиталей электронами
- •1.2. Периодический закон и периодическая система элементов д. И. Менделеева
- •1.3. Основные характеристики атомов элементов
- •1.3.1. Радиус атома
- •1.3.2. Энергия ионизации
- •1.3.3. Энергия сродства к электрону
- •1.3.4. Относительная электроотрицательность
- •Глава 2 химическая связь
- •2.1. Ковалентная связь
- •2.1.1. И молекулярные орбитали
- •2.1.2. Механизмы возникновения ковалентной связи
- •2.1.3. Особенности ковалентной связи
- •2.2. Ионная связь
- •2.3. Металлическая связь
- •Глава 3 межмолекулярные взаимодействия и агрегатное состояние вещества
- •3.1. Межмолекулярные взаимодействия
- •3.2. Агрегатное состояние вещества
- •3.2.1. Твердое состояние
- •3.2.2. Жидкое состояние
- •3.2.3. Жидкокристаллическое состояние
- •3.2.4. Паро- и газообразное состояния
- •Глава 4 основы химической термодинамики и биоэнергетики
- •4.1. Основные понятия термодинамики
- •4.2. Первый закон термодинамики
- •4.3. Понятие о самопроизвольных процессах.
- •4.4. Второй закон термодинамики. Энергия гиббса
- •4.5. Принцип энергетического сопряжения биохимических реакций
- •Г лава 5 основы кинетики биохимических реакций и химического равновесия
- •5.1. Основные понятия и терминология раздела
- •5.2. Факторы, влияющие на скорость гомогенных реакций
- •5.2.1. Влияние природы реагирующих веществ
- •5.2.2. Влияние концентрации реагентов.
- •5.2.3. Влияние температуры. Энергия активации
- •5.2.4. Влияние катализатора
- •5.3. Особенности кинетики гетерогенных реакций
- •5.4. Особенности кинетики цепных реакций
- •5.5. Химическое равновесие
- •5.5.1. Смещение химического равновесия
- •5.6. Ферментативный катализ и его особенности
- •5.7. Автоколебательные биохимические процессы
- •Г лава 6 растворы и их коллигативные свойства
- •6.1. Вода как растворитель и ее роль в жизнедеятельности организма
- •6.2. Термодинамика процесса растворения
- •6.З. Способы выражения концентрации растворов
- •6.4. Коллигативные свойства растворов
- •6.4.1. Диффузия
- •6.4.2. Осмос. Осмотическое и онкотическое давление
- •6.4.3. Давление насыщенного пара над раствором
- •6.4.4. Температура кипения и замерзания раствора
- •Глава 7 растворы электролитов и ионные равновесия
- •7.1. Электролитическая диссоциация
- •7.2. Равновесие в растворах слабых электролитов
- •7.2.1. Влияние общего иона и противоиона на равновесие
- •7.2.2. Взаимосвязь константы диссоциации и степени диссоциации
- •7.3. Особенности растворов сильных электролитов. Ионная сила раствора
- •7.4. Электролитическая диссоциация и ионное произведение воды
- •7.5. Водородный и гидроксильный показатели (рН и рОн)
- •7.6. Физико-химические основы водно-электролитного баланса в организме
- •Г лава 8 теория кислот и оснований и протолитические равновесия
- •8.1. Протолитическая теория кислот и оснований
- •8.2. Кислотно-основные свойства а-аминокислот
- •8.3. Важнейшие кислотно-основные реакции
- •8.3.1. Гидролиз солей
- •8.3.2. Реакции нейтрализации
- •8.3.3. Общая, активная и потенциальная кислотность растворов
- •8.4. Протолитический баланс. Буферные растворы и их свойства
- •8.5. Буферные системы организма, их взаимодействие, явления ацидоза и алкалоза
- •9.1. Основные понятия и факторы, влияющие на протекание окислительно-восстановительных реакций
- •9.2. Направление протекания окислительно-восстановительных реакций
- •9.3. Особенности биохимических окислительно-восстановительных процессов в организмах
- •9.3.1. Степень окисления углерода в органических соединениях
- •9.3.2. Биохимические реакции внутри- и межмолекулярной окислительно-восстановительной дисмутации за счет атомов углерода
- •9.3.3. Окислительно-восстановительные превращения кофакторов и коферментов оксидоредуктаз
- •9.3.4. Электронотранспортные цепи
- •9.3.5. Дегидрогеназное окисление-восстановление
- •9.3.6. Окислительное фосфорилирование
- •9.3.7. Фотофосфорилирование
- •9.3.8. Оксигеназное окисление-восстановление
- •9.3.9. Свободнорадикальное окисление и антиоксидантная система организма
- •9.4. Использование окислителей и восстановителей в медико-санитарной практике
- •Глава 10 комплексные соединения и их свойства
- •10.1. Основные понятия и терминология
- •10.2. Химическая связь в комплексных соединениях и особенности их строения
- •10.3. Химические свойства комплексных соединений
- •10.4. Медико-биологическая роль комплексных соединений
- •10.5. Металлолигандный баланс и его нарушения
- •10.6. Комплексонометрия
- •Глава 11 гетерогенные процессы и равновесия в растворах
- •11.1. Основные понятия и теоретические основы
- •11.2. Гетерогенные равновесия в растворах, связанные с процессом кристаллизации
- •11.3. Гетерогенные равновесия в растворах, связанные с процессом расслоения
- •11.4. Гетерогенные равновесия в живых системах
- •Глава 12 химия элементов-органогенов
- •12.2. Строение, химические свойства и роль элементов-органогенов и их соединений в растительном и животном мире
- •12.2.1. Водород и его соединения
- •12.2.2. Углерод и его соединения
- •12.2.3. Азот и его соединения
- •12.2.4. Фосфор и его соединения
- •12.2.5. Кислород и его соединения
- •12.2.6. Сера и ее соединения
- •12.3. Строение и химические свойства галогенов и их соединений
- •Глава 13 химия ионов металлов жизни и их роль в растительном и животном мире
- •13.1. Химия ионов s-металлов в организме
- •13.1.1. Натрий и калий
- •13.1.2. Магний и кальций
- •13.2. Химия ионов d-металлов в организме
- •13.2.1. Марганец
- •13.2.2. Железо и кобальт
- •13.2.3. Медь
- •13.2.4. Цинк
- •13.2.5. Молибден
- •Глава 14 химия и анализ загрязнений окружающей среды
- •14.1. Химия загрязнений атмосферы
- •14.1.1. Токсический смог
- •14.1.2. Фотохимический смог
- •14.1.3. Кислотные дожди
- •14.1.4. Загрязнение атмосферы другими токсикантами
- •14.1.5. Разрушение озонового слоя
- •14.2. Методы анализа токсикантов и методы снижения их поступления в атмосферу
- •14.3. Загрязнение гидросферы. Понятие об общих показателях, характеризующих природные и сточные воды
- •Глава 15 основные понятия органической химии
- •15.1. Основы классификации и номенклатуры органических соединений
- •15.2. Пространственная структура биоорганических молекул и виды изомерии
- •15.3. Понятие о взаимном влиянии атомов в молекуле и электронные эффекты
- •15.4. Классификация органических реакций и их компонентов
- •Г лава 16 алифатические и ароматические углеводороды
- •16.1. Строение и реакционная способность алканов
- •16.2. Строение и реакционная способность ненасыщенных углеводородов: алкенов и диенов
- •16.3. Ароматические углеводороды (арены)
- •Глава 17 спирты, фенолы, простые эфиры, тиолы и сульфиды
- •17.2. Физико-химические свойства спиртов и фенолов
- •17.3. Химические свойства спиртов
- •17.4. Химические свойства фенолов
- •17.5. Простые эфиры
- •17.6. Тиолы и сульфиды
- •Г лава 18 альдегиды, кетоны и их производные
- •18.1. Строение, номенклатура и физико-химические свойства альдегидов и кетонов
- •18.2. Химические свойства альдегидов и кетонов
- •18.2.1. Кислотно-основные свойства
- •18.2.2. Электрофильно-нуклеофильные свойства
- •18.2.3. Окислительно-восстановительные свойства
- •18.2.4. Комплексообразующие свойства
- •18.3. Альдегиды и кетоны в окружающей среде
- •Г лава 19 карбоновые кислоты и их функциональные производные
- •19.2. Химические свойства предельных кислот и их производных
- •19.2.1. Кислотно-основные свойства
- •19.2.2. Карбоновые кислоты как ацилирующие реагенты
- •19.2.3. Производные карбоновых кислот, их свойства и взаимные превращения
- •19.2.4. Окислительно-восстановительные свойства карбоновых кислот и их производных
- •19.3. Особенности свойств замещенных карбоновых кислот и их производных
- •19.3.1. Дикарбоновые кислоты
- •19.3.2. Гидроксикарбоновые кислоты
- •19.3.3. Оксокарбоновые кислоты
- •19.3.4. Ненасыщенные карбоновые кислоты
- •19.4. Основные реакции метаболизма карбоновых кислот
- •19.4.1. Биосинтез жирных кислот
- •1 9.4.2. Биологическое окисление жирных кислот
- •19.4.3. Реакции цикла кребса
- •19.5. Кислоты ароматического ряда и их производные как лекарственные средства
- •Г лава 20 Липиды
- •20.1. Жиры и воски
- •20.2. Омыляемые сложные липиды
- •20.3. Неомыляемые липиды - низкомолекулярные биорегуляторы
- •Глава 21 аминокислоты, пептиды и белки
- •21.1. Строение, классификация и физико-химические свойства а-аминокислот
- •21.2. Химические свойства а-аминокислот
- •21.2.1. Кислотно-основные свойства и прототропная таутомерия
- •21.2.2. К0мплекс00бразующие свойства
- •21.2.3. Электрофильно-нуклеофильные свойства
- •21.2.4. Окислительно-восстановительные свойства
- •21.3. Структура и свойства пептидов
- •21.4. Структура и свойства белков
- •Глава 22 углеводы и полисахариды
- •22.1. Строение, изомерия и свойства моносахаридов
- •22.1.1. Химические свойства моносахаридов и их производных
- •22.1.2. Катаболизм глюкозы - гликолиз
- •22.3. Полисахариды, их структура и свойства
- •22.3.1. Гомополисахариды
- •22.3.2. Гетерополисахариды, протеогликаны, гликопротеины
- •Г лава 23 биологически важные азотсодержащие соединения
- •23.1. Электронные состояния атома азота в его соединениях и свойства этих соединений
- •23.2. Роль аммиака для живых организмов и пути его обезвреживания. Цикл мочевины и ее свойства
- •23.3. Азотсодержащие ароматические гетероциклические соединения
- •23.4. Нуклеозиды, нуклеотиды и нуклеиновые кислоты, их структура и свойства
- •Г лава 24 электрохимия. Электрическая проводимость растворов электролитов
- •24.1. Электрическая подвижность ионов в растворе
- •24.2. Удельная электрическая проводимость растворов электролитов
- •24.3. Молярная электрическая проводимость растворов электролитов
- •24.4. Закон независимого движения ионов в разбавленных растворах (закон кольрауша)
- •24.5. Кондуктометрические методы анализа
- •24.5.1. Кондуктометрическое титрование
- •24.6. Электрическая проводимость биологических объектов в норме и патологии
- •Г лава 25 межфазные электрические потенциалы, гальванические цепи, потенциометрия
- •25.1. Возникновение двойного электрического слоя и виды электрических потенциалов
- •25.2. Электродный потенциал. Стандартный водородный электрод. Гальванические цепи. Уравнение нернста
- •25.3. Восстановительный потенциал
- •25.4. Диффузионный потенциал
- •25.5. Мембранный потенциал
- •25.6. Потенциометрия
- •25.6.1. Хлорсеребряный электрод сравнения
- •25.6.2. Ионо- и молекулярноселективные электроды определения
- •25.6.3. Потенциометрическое титрование
- •Глава 26 физико-химические основы поверхностных явлений
- •26.1. Свободная поверхностная энергия
- •26.2. Сорбция и ее виды
- •26.3. Абсорбция
- •26.4. Адсорбция
- •26.4.1. Адсорбция на неподвижной поверхности раздела фаз
- •26.4.2. Молекулярная адсорбция из растворов на твердых адсорбентах
- •26.4.3. Адсорбция ионов из растворов
- •26.4.4. Ионообменная адсорбция
- •26.5. Адсорбция на подвижной поверхности раздела фаз
- •26.6. Поверхностно-активные вещества
- •26.7. Хроматография
- •Глава 27 физикохимия дисперсных систем
- •27.2. Лиофобные коллоидные растворы
- •27.2.1. Строение мицелл в лиофобных коллоидных растворах
- •27.2.2. Свойства лиофобных коллоидных растворов
- •27.2.3. Влияние высокомолекулярных соединений на устойчивость лиофобных коллоидов. Флокуляция
- •27.3. Лиофильные коллоидные растворы
- •27.3.1. Строение мицелл пав и вмс в водных коллоидных растворах в зависимости от их концентрации
- •27. 3. 2. Получение и свойства лиофильных коллоидных растворов
- •27.3.3. Моющее действие растворов пав
- •27.3.4. Особенности растворов биополимеров
- •27.4. Структурообразование в растворах вмс. Возникновение связнодисперсных систем и их свойства
- •27.5. Грубодисперсные системы
- •27.5.1. Суспензии
- •27.5.2. Эмульсии
- •27.5.3. Аэрозоли
- •27.6. Электрокинетические явления в дисперсных системах
- •27.7. Ткани организма - дисперсные системы
- •27.7.1. Строение и свойства межклеточных мембран
- •27.7.2. Кровь - сложная дисперсная система
- •Приложение 1 применение осмолярной и осмоляльной концентраций в практической медицине
6.4. Коллигативные свойства растворов
Разбавленные растворы характеризуются отсутствием взаимодействия между частицами растворенного вещества. Поэтому свойства разбавленных растворов не зависят от природы растворенного вещества, а зависят только от числа частиц в единице объема раствора, т. е. от их концентрации.
Коллигативными свойствами называются свойства растворов, не зависящие от природы частиц растворенного вещества, а зависящие только от концентрации частиц в растворе.
Коллигативными свойствами разбавленных растворов являются:
скорость диффузии;
осмотическое давление;
давление насыщенного пара растворителя над раствором;
температура кристаллизации раствора;
температура кипения раствора.
6.4.1. Диффузия
О
чевидно,
что если на концентрированный водный
раствор какого-нибудь вещества осторожно
налить воду так, чтобы не произошло
перемешивания, то через некоторое время
обязательно произойдет выравнивание
концентрации вещества по всему объему
системы вследствие диффузии.
Диффузией в растворе называется самопроизвольный направленный процесс переноса частиц растворенного вещества и растворителя, который осуществляется при наличии градиента концентрации растворенного вещества и приводит к выравниванию концентрации этого вещества по всему объему раствора.
Причиной диффузии, с позиции термодинамики, является стремление системы к максимуму энтропии. Несмотря на хаотический характер теплового движения частиц в системе, диффузия частиц как результат этого движения всегда направлена от большей концентрации к меньшей. Направленный характер диффузия имеет до тех пор, пока есть различия в концентрации частиц в отдельных частях системы. После выравнивания концентрации частиц происходит выравнивание и скоростей их диффузии в разных направлениях.
Количество вещества, переносимого за счет диффузии через единичную площадь поверхности в единицу времени, называется скоростью диффузии. Скорость диффузии прямо пропорциональна температуре и разности концентраций по обе стороны поверхности, через которую осуществляется диффузия. В то же время скорость диффузии обратно пропорциональна вязкости среды и размеру частиц.
6.4.2. Осмос. Осмотическое и онкотическое давление
Рассмотрим случай, когда на пути диффузии частиц растворенного вещества и растворителя находится мембрана с избирательной проницаемостью, через которую свободно проходят молекулы растворителя, а молекулы растворенного вещества практически не проходят. Лучшей избирательной проницаемостью обладают мембраны, изготовленные из природных тканей животного и растительного происхождения (стенки кишок и мочевого пузыря, различные растительные ткани).
Осмосом называется самопроизвольная диффузия молекул растворителя сквозь мембрану с избирательной проницаемостью.
-
болышей
площади поверхности мембраны, свободной
от частиц растворенного вещества со
стороны чистого растворителя s1,
чем со стороны раствора s2,
где часть поверхности мембраны занята
частицами растворенного вещества, т.
е. s1
> s2;
Рис. 6.7. Осмос в системе растворитель — раствор, разделенные мембраной с избирательной проницаемостью
- большей подвижности молекул растворителя в чистом растворителе, чем в растворе, где есть межмолекулярное взаимодействие между веществом и растворителем, уменьшающее подвижность молекул растворителя.
И
з-за
этих различий через некоторое время,
вследствие уменьшения разности
концентрации растворителя в разделенных
частях системы и появления избыточного
гидростатического давления со стороны
раствора, скорость
диффузии
растворителя будут изменяться
по-разному:
-
уменьшаться, а
-
увеличиваться. Это обстоятельство
обязательно приведет к наступлению
в системе состояния динамического
физико-химического равновесия,
характеризующегося равенством скоростей
диффузии молекул растворителя через
мембрану
Появляющееся избыточное гидростатические дшишпис в системе является следствием осмоса, поэтому это давление называется осмотическим.
Осмотическим давлением ( ) называют избыточное гидростатическое давление, возникающее в результате осмоса и приводящее к выравниванию скоростей взаимного проникновения молекул растворителя сквозь мембрану с избирательной проницаемостью.
В. Пфеффер и Я. Вант-Гофф, изучая количественную зависимость осмотического давления от внешних факторов, установили, что оно подчиняется объединенному газовому закону Менделеева - Клапейрона:
где с - молярная концентрация вещества в растворе, моль/л.
Из этого уравнения видно, что осмотическое давление не зависит от природы растворенного вещества, а зависит только от числа частиц в растворе и от температуры. Однако это уравнение справедливо только для растворов, в которых отсутствует взаимодействие частиц, т. е. для идеальных растворов. В реальных растворах имеют место межмолекулярные взаимодействия между молекулами вещества и растворителя, которые могут приводить или к диссоциации молекул растворенного вещества на ионы, или к ассоциации молекул растворенного вещества с образованием из них ассоциатов.
Диссоциация молекул вещества в водном растворе характерна для электролитов (см. разд. 7.1). В результате диссоциации число частиц в растворе увеличивается.
Ассоциация наблюдается, если молекулы вещества лучше взаимодействуют между собой, чем с молекулами растворителя. В результате ассоциации число частиц в растворе уменьшается.
Для учета межмолекулярных взаимодействий в реальных растворах Вант-Гофф предложил использовать изотонический коэффициент l. Для молекул растворенного вещества физический смысл изотонического коэффициента:
Для растворов неэлектролитов, молекулы которых не диссоциируют и мало склонны к ассоциации, i = 1.
Для водных растворов электролитов вследствие диссоциации i > 1, причем максимальное его значение (lmax) для данного электролита равно числу ионов в его молекуле:
Для растворов, в которых вещество находится в виде ассоциатов, i < 1, что характерно для коллоидных растворов. Для растворов белков и высокомолекулярных веществ величина i зависит от концентрации и природы этих веществ (разд. 27.3.1).
С учетом межмолекулярных взаимодействий осмотическое давление для реальных растворов равно:
Это уравнение правильно отражает наблюдаемое в эксперименте осмотическое давление растворов с одинаковой массовой долей вещества, но с различной природой и состоянием растворенного вещества в растворе (табл. 6.2).
При осмосе молекулы растворителя преимущественно движутся через мембрану в том направлении, где концентрация частиц вещества больше, а концентрация растворителя меньше. Другими словами, в результате осмоса происходит всасывание растворителя в ту часть системы, где концентрация частиц вещества больше. Если осмотическое давление у растворов одинаковое, то они называются изотоническими и между ними происходит подлинно равновесный обмен растворителем. В случае контакта двух растворов с разным осмотическим давлением гипертоническим раствором называется тот, у которого осмотическое давление больше, а гипотоническим — раствор с меньшим осмотическим давлением. Гипертонический раствор всасывает растворитель из гипотонического раствора, стремясь выровнять концентрации вещества путем перераспределения растворителя между контактирующими растворами.
Осмотическая ячейка - это система, отделенная от окружающей среды мембраной с избирательной проницаемостью. Все клетки живых существ являются осмотическими ячейками, которые способны всасывать растворитель из окружающей среды или, наоборот, его отдавать, в зависимости от концентраций растворов, разделенных мембраной.
В результате эндоосмоса вода диффундирует в клетку, происходит набухание клетки с появлением напряженного состояния клетки, называемого тургор. В растительном мире тургор помогает растению сохранять вертикальное положение и определенную форму.
Е
сли
разница в концентрациях наружного и
внутреннего раствора достаточно
велика, а прочность оболочки клетки
небольшая, то эндоосмос приводит к
разрушению клеточной мембраны и лизису
клетки.
Именно эндоосмос является причиной
гемолиза
эритроцитов
крови с выделением гемоглобина в плазму
(см. рис. 6.9). Эндоосмос происходит, если
клетка оказывается в гипотоническом
растворе.
Экзоосмос — движение растворителя из осмотической ячейки в окружающую среду. Условие экзоосмоса:
В результате экзоосмоса вода диффундирует из клетки в плазму и происходит сжатие и сморщивание оболочки клетки, называемое плазмолизом. Экзоосмос имеет место, если клетка оказывается в гипертонической среде. Явление экзоосмоса наблюдается, например, при посыпании ягод или фруктов сахаром, а овощей, мяса или рыбы - солью. При этом происходит консервирование продуктов питания благодаря уничтожению микроорганизмов вследствие их плазмолиза.
При приготовлении физиологических растворов необходимо учитывать их осмотические свойства, поэтому их концентрацию выражают через осмолярную концентрацию (осмолярность) (см. Приложение 1).
Осмолярная концентрация - суммарное молярное количество всех кинетически активных, т. е. способных к самостоятельному движению, частиц, содержащихся в 1 литре раствора, независимо от их формы, размера и природы.
Осмолярная концентрация раствора связана с его молярной концентрацией через изотонический коэффициент с = ic(X).
Роль
осмоса в биологии и медицине. Осмос
является одной из причин, обуславливающих
поступление воды и растворенных в ней
веществ из почвы по стеблю или стволу
растения к листьям, так как
.
Осмотическое давление растительных
клеток колеблется от 5 до 20 ат, а у растений
пустынь достигает даже 70 ат.
Особенностью высших животных и человека является постоянство осмотического давления во многих физиологических системах, и прежде всего в системе кровообращения. Постоянство осмотического давления называется изоосмией. Осмотическое давление человека довольно постоянно и составляет 740-780 кПа (7,4-7,8 ат) при 37 °С. Оно обусловлено главным образом присутствием в крови катионов и анионов неорганических солей и в меньшей степени - наличием коллоидных частиц и белков. Присутствие в плазме крови форменных элементов (эритроцитов, лейкоцитов, тромбоцитов и кровяных пластинок) почти не влияет на осмотическое давление. Постоянство осмотического давления в крови регулируется выделением паров воды при дыхании, работой почек, выделением пота и т. Д.
Рис. 6.8. Роль онкотического давления крови в капиллярном обмене воды
Осмотическое давление крови, создаваемое за счет белков плазмы крови, называемое онкотическим давлением, хотя и составляет величину порядка 2,5-4,0 кПа, но играет исключительно важную роль в обмене водой между кровью и тканями, в распределении ее между сосудистым руслом и внесосудистым пространством.
Онкотическое давление - это осмотичекое давление, создаваемое за счет наличия белков в биожидкостях организма.
Онкотическое давление крови составляет 0,5 % суммарного осмотического давления плазмы крови, но его величина соизмерима с гидростатическим давлением в кровеносной системе (рис. 6.8).
Рис. 6.9. Изменение эритроцита в растворах с различным осмотическим давлением 77пр_ра:
а - изотонический раствор (0,9 % NaCl); б - гипертонический раствор (2 % NaCl); в - гипотонический раствор (0,1 % NaCl)
Гидростатическое давление крови падает от артериальной части кровеносной системы к венозной. Если в артериальной части капилляров гидростатическое давление больше онкотического давления, то в венозной - меньше. Это обеспечивает перемещение воды из артериальных капилляров в межклеточную жидкость тканей, а венозные капилляры, наоборот, втягивают межклеточную жидкость. Причем интенсивность такого переноса воды прямо пропорциональна разности между Ргидр и онк.
При понижении онкотического давления крови, которое наблюдается при гипопротеинемии (понижение содержания белка в плазме), вызванной голоданием, нарушением пищеварения или выделением белка с мочой при болезни почек, указанное соотношение давлений ргидр и 0HK нарушается. Это приводит к перераспределению жидкости в сторону тканей, и в результате возникают онкотпические отеки ("голодные" или "почечные").
Осмотическому давлению крови человека соответствует осмо-лярная концентрация частиц от 290 до 300 мОсм/л. В медицинской и фармацевтической практике изотоническими (физиологическими) растворами называют растворы, характеризующиеся таким же осмотическим давлением, как и плазма крови (рис. 6.9, а). Такими растворами являются 0,9 % раствор NaCl (0,15 моль/л), в котором i = 2, и 5 % раствор глюкозы (0,3 моль/л). Во всех случаях, когда в кровяное русло, мышечную ткань, спинномозговой канал и т. д. с терапевтическими целями вводят растворы, необходимо помнить о том, чтобы эта процедура не привела к "осмотическому конфликту" из-за различия осмотических давлений вводимого раствора и данной системы организма. Если, например, внутривенно ввести раствор, гипертонический по отношению к крови, то вследствие экзоосмоса эритроциты будут обезвоживаться и сморщиваться - плазмолиз (рис. 6.9, б). Если же вводимый раствор гипотоничен по отношению к крови, то наблюдается "осмотический шок" и вследствие эндоосмоса может произойти разрыв эритроцитарных оболочек - гемолиз (рис. 6.9, в). Начальная стадия гемолиза происходит при местном снижении осмотического давления до 360-400 кПа (3,5-3,9 ат), а полный гемолиз - при 260-300 кПа (2,5-3,0 ат).
Изменение осмотического равновесия в биосистемах организма может быть вызвано нарушением обмена веществ, секреторными процессами и поступлением пищи. Кроме того, всякое физическое напряжение, усиливающее обмен веществ, может способствовать повышению осмотического давления крови. Несмотря на эти нарушения, осмотическое давление крови поддерживается постоянным, хотя химический состав крови может значительно изменяться. При возникновении осмотической гипертонии крови соединительная ткань, находящаяся в месте нарушения, отдает в кровь воду и забирает из нее соли почти сразу и до тех пор, пока осмотическое давление крови или тканевой жидкости не возвратится к нормальному значению. После этой быстрой реакции включаются почки, которые отвечают на увеличение количества каких-либо солей повышенным их выделением, пока не будет восстановлен нормальный состав соединительной ткани и крови. Осмотическое давление мочи, сохраняя норму, может изменяться в пределах от 7,0 до 25 ат (690-2400 кПа). Подобная регуляция имеет определенные границы, и поэтому для ее усиления может потребоваться поступление воды или солей извне. Здесь вступает в действие вегетативная нервная система. Чувство жажды после физической работы (повышенный обмен веществ) или при почечной недостаточности (накопление веществ в крови из-за недостаточного их выделения) - это проявление осмотической гипертонии. Обратное явление наблюдается в случае солевого голода, вызывающего осмотическую гипотонию.
Воспаление возникает в результате резкого местного усиления обмена веществ. Причиной воспаления могут быть различные воздействия - химические, механические, термические, инфекционные и радиационные. Вследствие повышенного местного обмена веществ усиливается распад макромолекул на более мелкие молекулы, что увеличивает концентрацию частиц в очаге воспаления. Это приводит к местному повышению осмотического давления, выделению в очаг воспаления большого количества жидкости из окружающих тканей и образованию экссудата. В медицинской практике используют гипертонические растворы или марлевые повязки, смоченные гипертоническим раствором NaCl, который в соответствии с закономерностями осмоса всасывает жидкость в себя, что способствует постоянному очищению раны от гноя или устранению отека. В некоторых случаях для этих же целей используют этиловый спирт или его концентрированные водные растворы, которые гипертоничны относительно живых тканей. На этом основано их дезинфицирующее действие, так как они способствуют плазмолизу бактерий и микроорганизмов.
Действие
слабительных средств - горькой соли
MgS04
• 7Н2О и глауберовой соли Na2S04
• 10Н2О также основано на явлении осмоса.
Эти соли плохо всасываются через стенки
кишечника, поэтому они создают в нем
гипертоническую среду и вызывают
поступление в кишечник большого
количества воды через его стенки, что
приводит к послабляющему действию.
Следует иметь в виду, что распределение
и перераспределение воды в организме
происходит и по другим более специфическим
механизмам, но осмос и
грает
в этих процессах ведущую роль, а значит,
он играет ведущую роль и в поддержании
гомеостаза.
