- •Оглавление
- •Глава 1 16
- •Глава 2 химическая связь 33
- •Глава 3 54
- •Глава 4 82
- •Глава 5 110
- •Глава 6 141
- •Глава 7 173
- •Глава 8 196
- •Глава 9 234
- •Глава 10 комплексные соединения и их свойства 272
- •Глава 11 297
- •Глава 12 316
- •Глава 13 377
- •Глава 14 400
- •Глава 15 основные понятия органической химии 419
- •Глава 16 445
- •Глава 17 474
- •Глава 18 499
- •Глава 19 518
- •Глава 20 562
- •Глава 21 аминокислоты, пептиды и белки 578
- •Глава 22 620
- •Глава 23 651
- •Глава 24 692
- •Глава 25 709
- •Глава 26 740
- •Глава 27 771
- •От автора
- •Глава 1 строение атома, периодический закон и периодическая система элементов д. И. Менделеева
- •1.1. Строение атома
- •1.1.1. Квантовые числа
- •1.1.2. Принципы заполнения атомных орбиталей электронами
- •1.2. Периодический закон и периодическая система элементов д. И. Менделеева
- •1.3. Основные характеристики атомов элементов
- •1.3.1. Радиус атома
- •1.3.2. Энергия ионизации
- •1.3.3. Энергия сродства к электрону
- •1.3.4. Относительная электроотрицательность
- •Глава 2 химическая связь
- •2.1. Ковалентная связь
- •2.1.1. И молекулярные орбитали
- •2.1.2. Механизмы возникновения ковалентной связи
- •2.1.3. Особенности ковалентной связи
- •2.2. Ионная связь
- •2.3. Металлическая связь
- •Глава 3 межмолекулярные взаимодействия и агрегатное состояние вещества
- •3.1. Межмолекулярные взаимодействия
- •3.2. Агрегатное состояние вещества
- •3.2.1. Твердое состояние
- •3.2.2. Жидкое состояние
- •3.2.3. Жидкокристаллическое состояние
- •3.2.4. Паро- и газообразное состояния
- •Глава 4 основы химической термодинамики и биоэнергетики
- •4.1. Основные понятия термодинамики
- •4.2. Первый закон термодинамики
- •4.3. Понятие о самопроизвольных процессах.
- •4.4. Второй закон термодинамики. Энергия гиббса
- •4.5. Принцип энергетического сопряжения биохимических реакций
- •Г лава 5 основы кинетики биохимических реакций и химического равновесия
- •5.1. Основные понятия и терминология раздела
- •5.2. Факторы, влияющие на скорость гомогенных реакций
- •5.2.1. Влияние природы реагирующих веществ
- •5.2.2. Влияние концентрации реагентов.
- •5.2.3. Влияние температуры. Энергия активации
- •5.2.4. Влияние катализатора
- •5.3. Особенности кинетики гетерогенных реакций
- •5.4. Особенности кинетики цепных реакций
- •5.5. Химическое равновесие
- •5.5.1. Смещение химического равновесия
- •5.6. Ферментативный катализ и его особенности
- •5.7. Автоколебательные биохимические процессы
- •Г лава 6 растворы и их коллигативные свойства
- •6.1. Вода как растворитель и ее роль в жизнедеятельности организма
- •6.2. Термодинамика процесса растворения
- •6.З. Способы выражения концентрации растворов
- •6.4. Коллигативные свойства растворов
- •6.4.1. Диффузия
- •6.4.2. Осмос. Осмотическое и онкотическое давление
- •6.4.3. Давление насыщенного пара над раствором
- •6.4.4. Температура кипения и замерзания раствора
- •Глава 7 растворы электролитов и ионные равновесия
- •7.1. Электролитическая диссоциация
- •7.2. Равновесие в растворах слабых электролитов
- •7.2.1. Влияние общего иона и противоиона на равновесие
- •7.2.2. Взаимосвязь константы диссоциации и степени диссоциации
- •7.3. Особенности растворов сильных электролитов. Ионная сила раствора
- •7.4. Электролитическая диссоциация и ионное произведение воды
- •7.5. Водородный и гидроксильный показатели (рН и рОн)
- •7.6. Физико-химические основы водно-электролитного баланса в организме
- •Г лава 8 теория кислот и оснований и протолитические равновесия
- •8.1. Протолитическая теория кислот и оснований
- •8.2. Кислотно-основные свойства а-аминокислот
- •8.3. Важнейшие кислотно-основные реакции
- •8.3.1. Гидролиз солей
- •8.3.2. Реакции нейтрализации
- •8.3.3. Общая, активная и потенциальная кислотность растворов
- •8.4. Протолитический баланс. Буферные растворы и их свойства
- •8.5. Буферные системы организма, их взаимодействие, явления ацидоза и алкалоза
- •9.1. Основные понятия и факторы, влияющие на протекание окислительно-восстановительных реакций
- •9.2. Направление протекания окислительно-восстановительных реакций
- •9.3. Особенности биохимических окислительно-восстановительных процессов в организмах
- •9.3.1. Степень окисления углерода в органических соединениях
- •9.3.2. Биохимические реакции внутри- и межмолекулярной окислительно-восстановительной дисмутации за счет атомов углерода
- •9.3.3. Окислительно-восстановительные превращения кофакторов и коферментов оксидоредуктаз
- •9.3.4. Электронотранспортные цепи
- •9.3.5. Дегидрогеназное окисление-восстановление
- •9.3.6. Окислительное фосфорилирование
- •9.3.7. Фотофосфорилирование
- •9.3.8. Оксигеназное окисление-восстановление
- •9.3.9. Свободнорадикальное окисление и антиоксидантная система организма
- •9.4. Использование окислителей и восстановителей в медико-санитарной практике
- •Глава 10 комплексные соединения и их свойства
- •10.1. Основные понятия и терминология
- •10.2. Химическая связь в комплексных соединениях и особенности их строения
- •10.3. Химические свойства комплексных соединений
- •10.4. Медико-биологическая роль комплексных соединений
- •10.5. Металлолигандный баланс и его нарушения
- •10.6. Комплексонометрия
- •Глава 11 гетерогенные процессы и равновесия в растворах
- •11.1. Основные понятия и теоретические основы
- •11.2. Гетерогенные равновесия в растворах, связанные с процессом кристаллизации
- •11.3. Гетерогенные равновесия в растворах, связанные с процессом расслоения
- •11.4. Гетерогенные равновесия в живых системах
- •Глава 12 химия элементов-органогенов
- •12.2. Строение, химические свойства и роль элементов-органогенов и их соединений в растительном и животном мире
- •12.2.1. Водород и его соединения
- •12.2.2. Углерод и его соединения
- •12.2.3. Азот и его соединения
- •12.2.4. Фосфор и его соединения
- •12.2.5. Кислород и его соединения
- •12.2.6. Сера и ее соединения
- •12.3. Строение и химические свойства галогенов и их соединений
- •Глава 13 химия ионов металлов жизни и их роль в растительном и животном мире
- •13.1. Химия ионов s-металлов в организме
- •13.1.1. Натрий и калий
- •13.1.2. Магний и кальций
- •13.2. Химия ионов d-металлов в организме
- •13.2.1. Марганец
- •13.2.2. Железо и кобальт
- •13.2.3. Медь
- •13.2.4. Цинк
- •13.2.5. Молибден
- •Глава 14 химия и анализ загрязнений окружающей среды
- •14.1. Химия загрязнений атмосферы
- •14.1.1. Токсический смог
- •14.1.2. Фотохимический смог
- •14.1.3. Кислотные дожди
- •14.1.4. Загрязнение атмосферы другими токсикантами
- •14.1.5. Разрушение озонового слоя
- •14.2. Методы анализа токсикантов и методы снижения их поступления в атмосферу
- •14.3. Загрязнение гидросферы. Понятие об общих показателях, характеризующих природные и сточные воды
- •Глава 15 основные понятия органической химии
- •15.1. Основы классификации и номенклатуры органических соединений
- •15.2. Пространственная структура биоорганических молекул и виды изомерии
- •15.3. Понятие о взаимном влиянии атомов в молекуле и электронные эффекты
- •15.4. Классификация органических реакций и их компонентов
- •Г лава 16 алифатические и ароматические углеводороды
- •16.1. Строение и реакционная способность алканов
- •16.2. Строение и реакционная способность ненасыщенных углеводородов: алкенов и диенов
- •16.3. Ароматические углеводороды (арены)
- •Глава 17 спирты, фенолы, простые эфиры, тиолы и сульфиды
- •17.2. Физико-химические свойства спиртов и фенолов
- •17.3. Химические свойства спиртов
- •17.4. Химические свойства фенолов
- •17.5. Простые эфиры
- •17.6. Тиолы и сульфиды
- •Г лава 18 альдегиды, кетоны и их производные
- •18.1. Строение, номенклатура и физико-химические свойства альдегидов и кетонов
- •18.2. Химические свойства альдегидов и кетонов
- •18.2.1. Кислотно-основные свойства
- •18.2.2. Электрофильно-нуклеофильные свойства
- •18.2.3. Окислительно-восстановительные свойства
- •18.2.4. Комплексообразующие свойства
- •18.3. Альдегиды и кетоны в окружающей среде
- •Г лава 19 карбоновые кислоты и их функциональные производные
- •19.2. Химические свойства предельных кислот и их производных
- •19.2.1. Кислотно-основные свойства
- •19.2.2. Карбоновые кислоты как ацилирующие реагенты
- •19.2.3. Производные карбоновых кислот, их свойства и взаимные превращения
- •19.2.4. Окислительно-восстановительные свойства карбоновых кислот и их производных
- •19.3. Особенности свойств замещенных карбоновых кислот и их производных
- •19.3.1. Дикарбоновые кислоты
- •19.3.2. Гидроксикарбоновые кислоты
- •19.3.3. Оксокарбоновые кислоты
- •19.3.4. Ненасыщенные карбоновые кислоты
- •19.4. Основные реакции метаболизма карбоновых кислот
- •19.4.1. Биосинтез жирных кислот
- •1 9.4.2. Биологическое окисление жирных кислот
- •19.4.3. Реакции цикла кребса
- •19.5. Кислоты ароматического ряда и их производные как лекарственные средства
- •Г лава 20 Липиды
- •20.1. Жиры и воски
- •20.2. Омыляемые сложные липиды
- •20.3. Неомыляемые липиды - низкомолекулярные биорегуляторы
- •Глава 21 аминокислоты, пептиды и белки
- •21.1. Строение, классификация и физико-химические свойства а-аминокислот
- •21.2. Химические свойства а-аминокислот
- •21.2.1. Кислотно-основные свойства и прототропная таутомерия
- •21.2.2. К0мплекс00бразующие свойства
- •21.2.3. Электрофильно-нуклеофильные свойства
- •21.2.4. Окислительно-восстановительные свойства
- •21.3. Структура и свойства пептидов
- •21.4. Структура и свойства белков
- •Глава 22 углеводы и полисахариды
- •22.1. Строение, изомерия и свойства моносахаридов
- •22.1.1. Химические свойства моносахаридов и их производных
- •22.1.2. Катаболизм глюкозы - гликолиз
- •22.3. Полисахариды, их структура и свойства
- •22.3.1. Гомополисахариды
- •22.3.2. Гетерополисахариды, протеогликаны, гликопротеины
- •Г лава 23 биологически важные азотсодержащие соединения
- •23.1. Электронные состояния атома азота в его соединениях и свойства этих соединений
- •23.2. Роль аммиака для живых организмов и пути его обезвреживания. Цикл мочевины и ее свойства
- •23.3. Азотсодержащие ароматические гетероциклические соединения
- •23.4. Нуклеозиды, нуклеотиды и нуклеиновые кислоты, их структура и свойства
- •Г лава 24 электрохимия. Электрическая проводимость растворов электролитов
- •24.1. Электрическая подвижность ионов в растворе
- •24.2. Удельная электрическая проводимость растворов электролитов
- •24.3. Молярная электрическая проводимость растворов электролитов
- •24.4. Закон независимого движения ионов в разбавленных растворах (закон кольрауша)
- •24.5. Кондуктометрические методы анализа
- •24.5.1. Кондуктометрическое титрование
- •24.6. Электрическая проводимость биологических объектов в норме и патологии
- •Г лава 25 межфазные электрические потенциалы, гальванические цепи, потенциометрия
- •25.1. Возникновение двойного электрического слоя и виды электрических потенциалов
- •25.2. Электродный потенциал. Стандартный водородный электрод. Гальванические цепи. Уравнение нернста
- •25.3. Восстановительный потенциал
- •25.4. Диффузионный потенциал
- •25.5. Мембранный потенциал
- •25.6. Потенциометрия
- •25.6.1. Хлорсеребряный электрод сравнения
- •25.6.2. Ионо- и молекулярноселективные электроды определения
- •25.6.3. Потенциометрическое титрование
- •Глава 26 физико-химические основы поверхностных явлений
- •26.1. Свободная поверхностная энергия
- •26.2. Сорбция и ее виды
- •26.3. Абсорбция
- •26.4. Адсорбция
- •26.4.1. Адсорбция на неподвижной поверхности раздела фаз
- •26.4.2. Молекулярная адсорбция из растворов на твердых адсорбентах
- •26.4.3. Адсорбция ионов из растворов
- •26.4.4. Ионообменная адсорбция
- •26.5. Адсорбция на подвижной поверхности раздела фаз
- •26.6. Поверхностно-активные вещества
- •26.7. Хроматография
- •Глава 27 физикохимия дисперсных систем
- •27.2. Лиофобные коллоидные растворы
- •27.2.1. Строение мицелл в лиофобных коллоидных растворах
- •27.2.2. Свойства лиофобных коллоидных растворов
- •27.2.3. Влияние высокомолекулярных соединений на устойчивость лиофобных коллоидов. Флокуляция
- •27.3. Лиофильные коллоидные растворы
- •27.3.1. Строение мицелл пав и вмс в водных коллоидных растворах в зависимости от их концентрации
- •27. 3. 2. Получение и свойства лиофильных коллоидных растворов
- •27.3.3. Моющее действие растворов пав
- •27.3.4. Особенности растворов биополимеров
- •27.4. Структурообразование в растворах вмс. Возникновение связнодисперсных систем и их свойства
- •27.5. Грубодисперсные системы
- •27.5.1. Суспензии
- •27.5.2. Эмульсии
- •27.5.3. Аэрозоли
- •27.6. Электрокинетические явления в дисперсных системах
- •27.7. Ткани организма - дисперсные системы
- •27.7.1. Строение и свойства межклеточных мембран
- •27.7.2. Кровь - сложная дисперсная система
- •Приложение 1 применение осмолярной и осмоляльной концентраций в практической медицине
Глава 4 основы химической термодинамики и биоэнергетики
После изучения этой главы вы должны:
усвоить понятия: система, гомогенная и гетерогенная системы, изолированная, закрытая и открытая системы, равновесное и стационарное состояния, параметры и функции состояния, экстенсивные и интенсивные величины, процесс, энергия, внутренняя энергия, работа, теплота, экзотермическая реакция, эндотермическая реакция, стандартное состояние, энтальпия, энтропия, информация, самопроизвольный процесс, энергия Гиббса, экзэргоническая реакция, эндэргоническая реакция;
знать: первый закон термодинамики, закон Гесса и его применение для расчета калорийности питания;
второй закон термодинамики, уметь на его основе прогнозировать направление самопроизвольного протекания процессов;
знать особенности протекания биохимических процессов в организме;
принцип Пригожина, особенности стационарного состояния живых систем, гомеостаз.
4.1. Основные понятия термодинамики
Термодинамика изучает законы, которые описывают энергетические превращения, сопровождающие физические, химические и биологические процессы. Одним из основных понятий в термодинамике является система.
Системой называют тело или группу взаимодействующих тел, фактически или мысленно выделяемых из окружающей среды.
Классификация систем и их характеристики. В зависимости от однородности различают гомогенные и гетерогенные системы.
Гомогенная система - это однородная система, в которой нет частей, различающихся по свойствам и разделенных поверхностями раздела.
Гомогенными системами являются, например, воздух, вода, истинные растворы.
Гетерогенная система - это разнородная система, состоящая из двух или более частей, отличающихся по свойствам, между которыми есть поверхность раздела, где свойства системы резко меняются.
Гетерогенными системами являются, например, молоко, цельная кровь, смеси воды и льда, воды и масла. Для гетерогенных систем часто используют понятие "фаза". В этих случаях фаза рассматривается как часть гетерогенной системы, которая имеет одинаковые свойства и ограничена границей раздела. Например, в молоке имеются три фазы: водная фаза, представляющая собой водный раствор солей, углеводов, белков и других веществ, в которой распределены две другие фазы: мелкие капельки жидких жиров и маленькие частички твердых жиров.
Существующие на Земле живые системы - гетерогенные. Они всегда отделены от окружающей среды оболочкой, и, кроме того, внутри каждой живой клетки имеется множество различных мембран - границ между ее частями.
В зависимости от характера взаимодействия с окружающей средой различают системы изолированные, закрытые и открытые.
Изолированная система характеризуется отсутствием обмена энергией и веществом с окружающей средой.
Закрытая система обменивается с окружающей средой энергией, а обмен веществом исключен.
Открытая система обменивается с окружающей средой энергией и веществом, а следовательно, и информацией.
Живой организм представляет собой открытую систему, жизнедеятельность которой невозможна без постоянного обмена веществом, энергией и информацией с окружающей средой. Абсолютно изолированных систем в природе нет.
В термодинамике принято различать три состояния системы: равновесное, стационарное и переходное.
Термодинамическое равновесное состояние системы
характеризуется постоянством всех свойств во времени в любой точке системы и отсутствием потоков вещества и энергии в системе.
Термодинамически равновесное состояние - это прежде всего устойчивое состояние системы. Для выведения системы из этого состояния необходим обмен энергией или веществом между системой и окружающей средой. Важно различать состояния термодинамического равновесия и химического равновесия; последнее всегда имеет динамический характер, так как достигается в результате выравнивания скоростей обратимых процессов.
Стационарное состояние системы характеризуется постоянством свойств во времени, которое поддерживается за счет непрерывного обмена веществом, энергией и информацией между системой и окружающей средой.
Для живого организма характерно стационарное состояние, а не равновесное, означающее для него смерть, так как прекращаются потоки вещества, энергии и информации между организмом и окружающей средой, обеспечивающие его жизнедеятельность.
Когда система переходит из одного равновесного или стационарного состояния в другое, то она находится в переходном состоянии.
Переходное состояние характеризуется изменением свойств системы во времени.
Состояние системы характеризуется определенной совокупностью физических и химических величин, которые называются параметрами системы. Параметрами являются: масса (т), количество вещества (число молей n), объем (V), температура (Т), давление (р), концентрация (с). Значение параметра можно измерять непосредственно.
Параметры системы разделяют на экстенсивные и интенсивные.
Экстенсивные параметры - параметры, значения которых пропорциональны числу частиц в системе (масса, объем, количество вещества).
Интенсивные параметры - параметры, значения которых не зависят от числа частиц в системе (температура, давление, концентрация).
Различие экстенсивных и интенсивных параметров четко проявляется при взаимодействии систем, когда значения экстенсивных параметров суммируются, а интенсивных - усредняются.
Наряду с параметрами для характеристики состояния системы используют функции состояния. Их значения рассчитывают по соответствующим формулам исходя из значений параметров, описывающих данное состояние системы. Такой величиной является, например, энергия. Функции состояния системы - всегда экстенсивные величины.
Значения параметров и функций состояния системы определяются только состоянием системы. Поэтому при переходе системы из одного состояния в другое изменение этих величин, т. е. А, не зависит от пути перехода, а определяется лишь начальным и конечным состоянием системы, т. е. их значениями в этих двух состояниях.
Переход системы из одного состояния в другое является процессом.
Процесс - это переход системы из одного состояния в другое, сопровождающийся необратимым или обратимым изменением хотя бы одного параметра, характеризующего данную систему.
В термодинамике изменение (Д) параметра или функции состояния системы в результате процесса вычисляют как разность их значений, характеризующих конечное и начальное состояние системы.
В отличие от состояния системы, которое характеризуется значением параметра или функции состояния, характеристикой процесса является их изменение или постоянство, т. е. значение А.
Процессы разделяют в зависимости от изменения параметров системы на изотермические, изобарические, изохорические:
Жизнедеятельность человека протекает при постоянстве температуры и давления, т. е. при изобарно-изотермических условиях (р, Т = const).
Для описания движения материи в живых организмах, по мнению автора, необходимо знать три величины: энергию, энтропию и информацию.
Энергия (Е) — количественная мера интенсивности различных форм перемещения и взаимодействия частиц в системе, включая перемещение системы в целом и ее взаимодействие с окружающей средой. Энергия имеет размерность кДж/моль.
В зависимости от формы движения различают тепловую, электрическую, химическую, ядерную и другие виды энергии. Термодинамика рассматривает превращение тепловой энергии в другие виды - механическую, химическую, электрическую и т. д. Движение материи включает перемещение частиц, которое характеризуется кинетической энергией (Екин), и взаимодействие частиц, которое характеризуется потенциальной энергией (Епот).
Для описания энергетического состояния системы используется ее функция состояния - внутренняя энергия (U, кДж/моль).
Внутренняя энергия представляет собой полную энергию системы, которая равна сумме потенциальной и кинетической энергии всех частиц этой системы, в том числе на молекулярном, атомном и субатомном уровнях:
U = Екин + Епот.
Внутренняя энергия не включает потенциальную энергию, обусловленную положением системы в пространстве, и кинетическую энергию движения всей системы в целом.
Внутренняя энергия - функция состояния, абсолютное значение которой определить невозможно, так как любая термодинамическая система материальна, а материя - с точки зрения ее строения - неисчерпаема. Экспериментально можно определить изменение внутренней энергии АС/ при взаимодействии системы с окружающей средой. При этом взаимодействии обмен энергией может осуществляться в виде работы и теплоты.
Работа - энергетическая мера направленных форм движения частиц в процессе взаимодействия системы с окружающей средой.
Работа (А) в термодинамике считается положительной, когда она совершается системой против внешних сил окружающей среды, при этом внутренняя энергия системы уменьшается.
Теплота - энергетическая мера хаотических форм движения частиц в процессе взаимодействия системы с окружающей средой.
В термодинамике теплота (Q) считается положительной, если она сообщается системе из окружающей среды, при этом внутренняя энергия системы увеличивается.
Работа и теплота не являются свойствами системы, а характеризуют процесс обмена энергией системы с окружающей средой, поэтому их величины зависят от пути процесса, по которому система перешла из одного состояния в другое. Термины "работа" и "теплота" означают как сам процесс передачи энергии, так и величину передаваемой при этом энергии.
Наряду с энергией для характеристики движения частиц в термодинамике используется еще одна функция состояния -энтропия.
Энтропия (S) - термодинамическая функция, характеризующая меру неупорядоченности системы, т. е. неоднородности расположения и движения ее частиц.
И
зменение
энтропии системы в условиях термодинамически
обратимого процесса равно отношению
передаваемой теплоты к абсолютной
температуре, при которой осуществляется
данный процесс:
Энтропия имеет размерность Дж/(моль • К). Факторы, влияющие на значение энтропии, описаны в разд. 4.3.
Энтропия является экстенсивным свойством системы, поэтому изменение энтропии системы в результате какого-либо процесса равно разности энтропии конечного и начального состояний системы, независимо от пути процесса:
Описание движения материи невозможно без таких термодинамических характеристик, как энергия и энтропия. Если энергия количественно характеризует интенсивность движения и взаимодействия частиц в системе, то энтропия - мера неупорядоченности системы, т. е. расположения и движения ее частиц. Изменение энтропии (AS) в процессе превращения энергии из одного вида в другой характеризует величину рассеяния энергии при этом процессе. Чем больше AS в процессе превращения энергии из одного вида в другой, тем меньше коэффициент полезного действия (КПД) этого процесса. Именно этим объясняется низкий КПД при превращении тепловой энергии в электрическую (теоретический КПД ~ 40 %). В то же время в гальваническом элементе, где химическая энергия окислительно-восстановительной реакции превращается в электрическую, КПД может достигать 98 %. В первом случае хаотические формы движения частиц необходимо превратить в направленное движение, т. е. имеем сильное изменение энтропии. Во втором случае направленное движение электронов и ионов, сопровождающее химическую реакцию, превращается в направленное движение заряженных частиц, т. е. упорядоченность движения частиц сохраняется, и поэтому изменение их энтропии незначительно, а следовательно, и рассеяние энергий незначительно.
Для полной характеристики движения частиц в системе наряду с энергией и энтропией автор считает необходимой еще одну функцию состояния - информацию.
Информация (I) - мера организованности системы, т. е. упорядоченности расположения и движения ее частиц.
И
нформация
выражается в битах, причем 1 бит информации
эквивалентен
10-23
Дж/К, т. е. является очень малой
термодинамической величиной.
Энтропия и информация являются
статистическими характеристиками
движения, описывающими его с противоположных
сторон. Это видно из
взаимосвязи этих величин с соответствующими
вероятностями данного состояния:
где W — термодинамическая вероятность, равная числу возможных состояний системы при заданных значениях энергии, объема и числа частиц (W -очень большая величина); w - математическая вероятность данного информационного состояния системы (w - очень малая величина); k – постоянная Больцмана:
Для самоорганизующихся систем наряду с законами сохранения массы, электрического заряда, энергии (разд. 4.2) имеет место еще один закон сохранения:
При этом, конечно, обе величины измеряются в одинаковых единицах, а значение их суммы зависит от типа системы. Это соотношение означает, что энтропия есть мера недостатка информации. При возрастании I убывает S и наоборот. Физический смысл этого закона: за полученную информацию система платит уменьшением своей энтропии, поэтому получение системой любой информации всегда связано с возрастанием энтропии в окружающей среде. Живые организмы - это высокоупорядоченные системы, содержащие колоссальное количество информации и, соответственно, обедненные энтропией. Понятие "информация системы" тесно связано с ее структурой, поэтому целесообразно для характеристики соответствующих систем (нуклеиновые кислоты, белки, водные системы) использовать термин "структурно-информационные свойства".
