- •Оглавление
- •Глава 1 16
- •Глава 2 химическая связь 33
- •Глава 3 54
- •Глава 4 82
- •Глава 5 110
- •Глава 6 141
- •Глава 7 173
- •Глава 8 196
- •Глава 9 234
- •Глава 10 комплексные соединения и их свойства 272
- •Глава 11 297
- •Глава 12 316
- •Глава 13 377
- •Глава 14 400
- •Глава 15 основные понятия органической химии 419
- •Глава 16 445
- •Глава 17 474
- •Глава 18 499
- •Глава 19 518
- •Глава 20 562
- •Глава 21 аминокислоты, пептиды и белки 578
- •Глава 22 620
- •Глава 23 651
- •Глава 24 692
- •Глава 25 709
- •Глава 26 740
- •Глава 27 771
- •От автора
- •Глава 1 строение атома, периодический закон и периодическая система элементов д. И. Менделеева
- •1.1. Строение атома
- •1.1.1. Квантовые числа
- •1.1.2. Принципы заполнения атомных орбиталей электронами
- •1.2. Периодический закон и периодическая система элементов д. И. Менделеева
- •1.3. Основные характеристики атомов элементов
- •1.3.1. Радиус атома
- •1.3.2. Энергия ионизации
- •1.3.3. Энергия сродства к электрону
- •1.3.4. Относительная электроотрицательность
- •Глава 2 химическая связь
- •2.1. Ковалентная связь
- •2.1.1. И молекулярные орбитали
- •2.1.2. Механизмы возникновения ковалентной связи
- •2.1.3. Особенности ковалентной связи
- •2.2. Ионная связь
- •2.3. Металлическая связь
- •Глава 3 межмолекулярные взаимодействия и агрегатное состояние вещества
- •3.1. Межмолекулярные взаимодействия
- •3.2. Агрегатное состояние вещества
- •3.2.1. Твердое состояние
- •3.2.2. Жидкое состояние
- •3.2.3. Жидкокристаллическое состояние
- •3.2.4. Паро- и газообразное состояния
- •Глава 4 основы химической термодинамики и биоэнергетики
- •4.1. Основные понятия термодинамики
- •4.2. Первый закон термодинамики
- •4.3. Понятие о самопроизвольных процессах.
- •4.4. Второй закон термодинамики. Энергия гиббса
- •4.5. Принцип энергетического сопряжения биохимических реакций
- •Г лава 5 основы кинетики биохимических реакций и химического равновесия
- •5.1. Основные понятия и терминология раздела
- •5.2. Факторы, влияющие на скорость гомогенных реакций
- •5.2.1. Влияние природы реагирующих веществ
- •5.2.2. Влияние концентрации реагентов.
- •5.2.3. Влияние температуры. Энергия активации
- •5.2.4. Влияние катализатора
- •5.3. Особенности кинетики гетерогенных реакций
- •5.4. Особенности кинетики цепных реакций
- •5.5. Химическое равновесие
- •5.5.1. Смещение химического равновесия
- •5.6. Ферментативный катализ и его особенности
- •5.7. Автоколебательные биохимические процессы
- •Г лава 6 растворы и их коллигативные свойства
- •6.1. Вода как растворитель и ее роль в жизнедеятельности организма
- •6.2. Термодинамика процесса растворения
- •6.З. Способы выражения концентрации растворов
- •6.4. Коллигативные свойства растворов
- •6.4.1. Диффузия
- •6.4.2. Осмос. Осмотическое и онкотическое давление
- •6.4.3. Давление насыщенного пара над раствором
- •6.4.4. Температура кипения и замерзания раствора
- •Глава 7 растворы электролитов и ионные равновесия
- •7.1. Электролитическая диссоциация
- •7.2. Равновесие в растворах слабых электролитов
- •7.2.1. Влияние общего иона и противоиона на равновесие
- •7.2.2. Взаимосвязь константы диссоциации и степени диссоциации
- •7.3. Особенности растворов сильных электролитов. Ионная сила раствора
- •7.4. Электролитическая диссоциация и ионное произведение воды
- •7.5. Водородный и гидроксильный показатели (рН и рОн)
- •7.6. Физико-химические основы водно-электролитного баланса в организме
- •Г лава 8 теория кислот и оснований и протолитические равновесия
- •8.1. Протолитическая теория кислот и оснований
- •8.2. Кислотно-основные свойства а-аминокислот
- •8.3. Важнейшие кислотно-основные реакции
- •8.3.1. Гидролиз солей
- •8.3.2. Реакции нейтрализации
- •8.3.3. Общая, активная и потенциальная кислотность растворов
- •8.4. Протолитический баланс. Буферные растворы и их свойства
- •8.5. Буферные системы организма, их взаимодействие, явления ацидоза и алкалоза
- •9.1. Основные понятия и факторы, влияющие на протекание окислительно-восстановительных реакций
- •9.2. Направление протекания окислительно-восстановительных реакций
- •9.3. Особенности биохимических окислительно-восстановительных процессов в организмах
- •9.3.1. Степень окисления углерода в органических соединениях
- •9.3.2. Биохимические реакции внутри- и межмолекулярной окислительно-восстановительной дисмутации за счет атомов углерода
- •9.3.3. Окислительно-восстановительные превращения кофакторов и коферментов оксидоредуктаз
- •9.3.4. Электронотранспортные цепи
- •9.3.5. Дегидрогеназное окисление-восстановление
- •9.3.6. Окислительное фосфорилирование
- •9.3.7. Фотофосфорилирование
- •9.3.8. Оксигеназное окисление-восстановление
- •9.3.9. Свободнорадикальное окисление и антиоксидантная система организма
- •9.4. Использование окислителей и восстановителей в медико-санитарной практике
- •Глава 10 комплексные соединения и их свойства
- •10.1. Основные понятия и терминология
- •10.2. Химическая связь в комплексных соединениях и особенности их строения
- •10.3. Химические свойства комплексных соединений
- •10.4. Медико-биологическая роль комплексных соединений
- •10.5. Металлолигандный баланс и его нарушения
- •10.6. Комплексонометрия
- •Глава 11 гетерогенные процессы и равновесия в растворах
- •11.1. Основные понятия и теоретические основы
- •11.2. Гетерогенные равновесия в растворах, связанные с процессом кристаллизации
- •11.3. Гетерогенные равновесия в растворах, связанные с процессом расслоения
- •11.4. Гетерогенные равновесия в живых системах
- •Глава 12 химия элементов-органогенов
- •12.2. Строение, химические свойства и роль элементов-органогенов и их соединений в растительном и животном мире
- •12.2.1. Водород и его соединения
- •12.2.2. Углерод и его соединения
- •12.2.3. Азот и его соединения
- •12.2.4. Фосфор и его соединения
- •12.2.5. Кислород и его соединения
- •12.2.6. Сера и ее соединения
- •12.3. Строение и химические свойства галогенов и их соединений
- •Глава 13 химия ионов металлов жизни и их роль в растительном и животном мире
- •13.1. Химия ионов s-металлов в организме
- •13.1.1. Натрий и калий
- •13.1.2. Магний и кальций
- •13.2. Химия ионов d-металлов в организме
- •13.2.1. Марганец
- •13.2.2. Железо и кобальт
- •13.2.3. Медь
- •13.2.4. Цинк
- •13.2.5. Молибден
- •Глава 14 химия и анализ загрязнений окружающей среды
- •14.1. Химия загрязнений атмосферы
- •14.1.1. Токсический смог
- •14.1.2. Фотохимический смог
- •14.1.3. Кислотные дожди
- •14.1.4. Загрязнение атмосферы другими токсикантами
- •14.1.5. Разрушение озонового слоя
- •14.2. Методы анализа токсикантов и методы снижения их поступления в атмосферу
- •14.3. Загрязнение гидросферы. Понятие об общих показателях, характеризующих природные и сточные воды
- •Глава 15 основные понятия органической химии
- •15.1. Основы классификации и номенклатуры органических соединений
- •15.2. Пространственная структура биоорганических молекул и виды изомерии
- •15.3. Понятие о взаимном влиянии атомов в молекуле и электронные эффекты
- •15.4. Классификация органических реакций и их компонентов
- •Г лава 16 алифатические и ароматические углеводороды
- •16.1. Строение и реакционная способность алканов
- •16.2. Строение и реакционная способность ненасыщенных углеводородов: алкенов и диенов
- •16.3. Ароматические углеводороды (арены)
- •Глава 17 спирты, фенолы, простые эфиры, тиолы и сульфиды
- •17.2. Физико-химические свойства спиртов и фенолов
- •17.3. Химические свойства спиртов
- •17.4. Химические свойства фенолов
- •17.5. Простые эфиры
- •17.6. Тиолы и сульфиды
- •Г лава 18 альдегиды, кетоны и их производные
- •18.1. Строение, номенклатура и физико-химические свойства альдегидов и кетонов
- •18.2. Химические свойства альдегидов и кетонов
- •18.2.1. Кислотно-основные свойства
- •18.2.2. Электрофильно-нуклеофильные свойства
- •18.2.3. Окислительно-восстановительные свойства
- •18.2.4. Комплексообразующие свойства
- •18.3. Альдегиды и кетоны в окружающей среде
- •Г лава 19 карбоновые кислоты и их функциональные производные
- •19.2. Химические свойства предельных кислот и их производных
- •19.2.1. Кислотно-основные свойства
- •19.2.2. Карбоновые кислоты как ацилирующие реагенты
- •19.2.3. Производные карбоновых кислот, их свойства и взаимные превращения
- •19.2.4. Окислительно-восстановительные свойства карбоновых кислот и их производных
- •19.3. Особенности свойств замещенных карбоновых кислот и их производных
- •19.3.1. Дикарбоновые кислоты
- •19.3.2. Гидроксикарбоновые кислоты
- •19.3.3. Оксокарбоновые кислоты
- •19.3.4. Ненасыщенные карбоновые кислоты
- •19.4. Основные реакции метаболизма карбоновых кислот
- •19.4.1. Биосинтез жирных кислот
- •1 9.4.2. Биологическое окисление жирных кислот
- •19.4.3. Реакции цикла кребса
- •19.5. Кислоты ароматического ряда и их производные как лекарственные средства
- •Г лава 20 Липиды
- •20.1. Жиры и воски
- •20.2. Омыляемые сложные липиды
- •20.3. Неомыляемые липиды - низкомолекулярные биорегуляторы
- •Глава 21 аминокислоты, пептиды и белки
- •21.1. Строение, классификация и физико-химические свойства а-аминокислот
- •21.2. Химические свойства а-аминокислот
- •21.2.1. Кислотно-основные свойства и прототропная таутомерия
- •21.2.2. К0мплекс00бразующие свойства
- •21.2.3. Электрофильно-нуклеофильные свойства
- •21.2.4. Окислительно-восстановительные свойства
- •21.3. Структура и свойства пептидов
- •21.4. Структура и свойства белков
- •Глава 22 углеводы и полисахариды
- •22.1. Строение, изомерия и свойства моносахаридов
- •22.1.1. Химические свойства моносахаридов и их производных
- •22.1.2. Катаболизм глюкозы - гликолиз
- •22.3. Полисахариды, их структура и свойства
- •22.3.1. Гомополисахариды
- •22.3.2. Гетерополисахариды, протеогликаны, гликопротеины
- •Г лава 23 биологически важные азотсодержащие соединения
- •23.1. Электронные состояния атома азота в его соединениях и свойства этих соединений
- •23.2. Роль аммиака для живых организмов и пути его обезвреживания. Цикл мочевины и ее свойства
- •23.3. Азотсодержащие ароматические гетероциклические соединения
- •23.4. Нуклеозиды, нуклеотиды и нуклеиновые кислоты, их структура и свойства
- •Г лава 24 электрохимия. Электрическая проводимость растворов электролитов
- •24.1. Электрическая подвижность ионов в растворе
- •24.2. Удельная электрическая проводимость растворов электролитов
- •24.3. Молярная электрическая проводимость растворов электролитов
- •24.4. Закон независимого движения ионов в разбавленных растворах (закон кольрауша)
- •24.5. Кондуктометрические методы анализа
- •24.5.1. Кондуктометрическое титрование
- •24.6. Электрическая проводимость биологических объектов в норме и патологии
- •Г лава 25 межфазные электрические потенциалы, гальванические цепи, потенциометрия
- •25.1. Возникновение двойного электрического слоя и виды электрических потенциалов
- •25.2. Электродный потенциал. Стандартный водородный электрод. Гальванические цепи. Уравнение нернста
- •25.3. Восстановительный потенциал
- •25.4. Диффузионный потенциал
- •25.5. Мембранный потенциал
- •25.6. Потенциометрия
- •25.6.1. Хлорсеребряный электрод сравнения
- •25.6.2. Ионо- и молекулярноселективные электроды определения
- •25.6.3. Потенциометрическое титрование
- •Глава 26 физико-химические основы поверхностных явлений
- •26.1. Свободная поверхностная энергия
- •26.2. Сорбция и ее виды
- •26.3. Абсорбция
- •26.4. Адсорбция
- •26.4.1. Адсорбция на неподвижной поверхности раздела фаз
- •26.4.2. Молекулярная адсорбция из растворов на твердых адсорбентах
- •26.4.3. Адсорбция ионов из растворов
- •26.4.4. Ионообменная адсорбция
- •26.5. Адсорбция на подвижной поверхности раздела фаз
- •26.6. Поверхностно-активные вещества
- •26.7. Хроматография
- •Глава 27 физикохимия дисперсных систем
- •27.2. Лиофобные коллоидные растворы
- •27.2.1. Строение мицелл в лиофобных коллоидных растворах
- •27.2.2. Свойства лиофобных коллоидных растворов
- •27.2.3. Влияние высокомолекулярных соединений на устойчивость лиофобных коллоидов. Флокуляция
- •27.3. Лиофильные коллоидные растворы
- •27.3.1. Строение мицелл пав и вмс в водных коллоидных растворах в зависимости от их концентрации
- •27. 3. 2. Получение и свойства лиофильных коллоидных растворов
- •27.3.3. Моющее действие растворов пав
- •27.3.4. Особенности растворов биополимеров
- •27.4. Структурообразование в растворах вмс. Возникновение связнодисперсных систем и их свойства
- •27.5. Грубодисперсные системы
- •27.5.1. Суспензии
- •27.5.2. Эмульсии
- •27.5.3. Аэрозоли
- •27.6. Электрокинетические явления в дисперсных системах
- •27.7. Ткани организма - дисперсные системы
- •27.7.1. Строение и свойства межклеточных мембран
- •27.7.2. Кровь - сложная дисперсная система
- •Приложение 1 применение осмолярной и осмоляльной концентраций в практической медицине
26.7. Хроматография
Хроматография является эффективным методом разделения и анализа биологических систем и объектов окружающей среды, позволяющим разделять смесь практически любых веществ. Основоположником хроматографического метода и самого термина "хроматография" (от греч. chroma - цвет, grapho - пишу) является русский ботаник М. С. Цвет, который еще в 1903 г. использовал этот метод для анализа и разделения хлорофилла.
Хроматография - физико-химический метод разделения и анализа смесей веществ, основанный на многократно повторяющихся процессах сорбции и десорбции разделяемых веществ между подвижной и неподвижной фазами, что приводит к различию в скорости движения этих веществ относительно неподвижной фазы.
Хроматографирование анализируемой смеси возможно при соблюдении следующих требований:
- разделяемые вещества должны иметь различные константы сорбции по отношению к подвижной и неподвижной фазам;
— неподвижная фаза должна быть такой, чтобы процессы сорбции разделяемых веществ на ней были обратимы.
Сущность разделения веществ при хроматографировании заключается во введении разделяемой смеси из веществ X, Y, Z в хроматографическое устройство, содержащее неподвижную и подвижную фазы. В соответствии с законами термодинамики и
Рис. 26.9. Схема хроматографического разделения смеси веществ
сорбсорбционного равновесия каждое вещество смеси будет распределяться между контактирующими фазами в соответствии с его сродством к этим фазам (рис. 26.9).
Эти
вещества будут перемещаться подвижной
фазой вдоль неподвижной с разными
скоростями. Чем больше сродство вещества
к неподвижной фазе и меньше к подвижной
фазе (вещество
),
тем меньше скорость его движения с
подвижной фазой относительно неподвижной.
Обратная картина будет наблюдаться
для вещества
.
Эти различия в свойствах веществ с
течением времени обусловят их разделение
в хроматографическом устройстве и
приведут к появлению на неподвижной
фазе отдельных зон, содержащих практически
чистые разделяемые вещества. Таким
образом, чем больше разница в сорбционной
способности разделяемых веществ к
подвижной и неподвижной фазам, тем
больше разница в скоростях их перемещения
по неподвижной фазе и тем полнее их
разделение.
Хроматографическая методика разделения веществ состоит из следующих этапов: 1) выбор и подготовка используемых образцов подвижной и неподвижной фаз; 2) нанесение анализируемой смеси на неподвижную фазу и введение подвижной фазы; 3) собственно хроматографирование, т. е. разделение веществ при движении подвижной фазы относительно неподвижной; 4) детектирование веществ, т. е. обнаружение местонахождения разделенных веществ на неподвижной фазе или в подвижной фазе после прохождения ее через неподвижную фазу; 5) количественное определение содержания веществ в разделенных зонах.
Эффективность хроматографического процесса зависит:
от физико-химических свойств неподвижной и подвижной фаз;
от сродства разделяемых веществ к контактирующим фазам;
от условий хроматографирования (скорости движения подвижной фазы, температуры, времени разделения).
Изменяя эти параметры, можно подобрать такие условия, которые позволят достигнуть разделения веществ с очень близкими физико-химическими свойствами, например изомеров.
Классификация хроматографических методов. В зависимости от рассматриваемого признака хроматографического процесса различают следующие виды хроматографии.
По цели проведения:
— аналитическая хроматография используется для качественного и количественного анализа смеси веществ;
- препаративная хроматография предназначена для выделения из смеси чистых компонентов или для очистки вещества от примесей.
П
о
агрегатному состоянию подвижной фазы
хроматографию подразделяют на газовую
и
жидкостную.
Рис. 26.10. Схема газового хроматографа (а) и хроматограмма разделяемой смеси веществ (б)
В газовой хроматографии подвижной фазой является газ, который называется газ-носитель, а неподвижной фазой - твердый гранулированный адсорбент или нелетучая жидкость, нанесенная на твердый носитель. Неподвижная фаза находится в колонке, а в случае капиллярной колонки роль неподвижной фазы выполняют ее стенки. Газовую хроматографию применяют для разделения летучих термически устойчивых веществ с молекулярной массой до 200-300.
Для
проведения газовой хроматографии
используют хроматограф (рис. 26.10).
Анализируемая смесь вводится в испаритель,
а оттуда с помощью газа-носителя попадает
в колонку с неподвижной фазой, помещенную
в термостат. Различные компоненты смеси
перемещаются газом-носителем вдоль
колонки с разными скоростями из-за
разного сродства их к неподвижной фазе.
Поэтому разделяемые вещества выходят
из колонки в разное время и по отдельности
регистрируются детектором, который
передает сигнал самописцу. В результате
получается хроматограмма, представляющая
собой несколько пиков, число которых
зависит от числа присутствующих в
смеси веществ, а площадь каждого пика
пропорциональна содержанию
соответствующего вещества. Идентификация
вещества проводится по времени
удерживания, которое сравнивают со
временем удерживания эталона при его
хроматографировании на данной колонке
при аналогичных условиях. Определение
количественного состава смеси
выполняют, анализируя площадь полученных
пиков для всех веществ, а относительное
содержание каждого компонента равно
отношению площади пика этого компонента
Si
к
сумме площадей пиков всех компонентов
смеси:
В жидкостной хроматографии подвижной фазой является жидкость, как чистая, так и смесь разных жидкостей. Неподвижной фазой является твердый гранулированный адсорбент или тонкий слой жидкости, нанесенный на твердый носитель или содержащийся в нем. Жидкостная хроматография пригодна для разделения органических и неорганических веществ, включая и термически неустойчивые, а также веществ с большой молекулярной массой.
По применяемой технике эксперимента жидкостная хроматография в зависимости от размещения неподвижной фазы делится на плоскостную (тонкослойную или бумажную) и объемную (колоночную).
В тонкослойной хроматографии (ТСХ) в качестве твердой фазы используются силикагель (nSi02 • mН2О), оксид алюминия (AI2O3), целлюлоза или другие полимеры, которые наносятся тонким слоем на пластинку (рис. 26.11, а). Вблизи нижнего края пластинки на слой сорбента наносят пятно анализируемой смеси, а рядом по горизонтали - пятна известных соединений-свидетелей. После высыхания пятен пластинку опускают в закрывающуюся камеру с подвижной фазой, которая поднимается по пластинке за счет капиллярных сил. Вместе с подвижной фазой по неподвижной фазе перемещаются нанесенные вещества, причем с разными скоростями, зависящими от их сорбционных свойств. Когда фронт подвижной фазы поднимется к верхнему краю пластинки, ее вынимают из камеры, высушивают, и, если анализируемые вещества не окрашены, то хроматограмму проявляют. Для этого хроматограмму или опрыскивают окрашивающим реагентом, или облучают ультрафиолетовым светом, или окрашивают, выдерживая в парах иода. При проявлении на хроматограмме в местах нахождения анализируемых веществ появляются пятна.
На рис. 26.11, б представлена тонкослойная хроматограмма, полученная при разделении смеси из трех веществ X, Y, Z. Для идентификации веществ используются соответствующие соединения-свидетели, а также значения фактора относительного
Рис. 26.11. Тонкослойная хроматография (а) и хроматограмма разделяемой смеси веществ (б)
удерживания Rf, представляющего собой отношение пути h(Х), пройденного веществом, к пути, пройденному подвижной фазой h(Ф) от линии старта до линии фронта:
Фактор относительного удерживания зависит от природы анализируемых веществ, природы подвижной и неподвижной фаз, от условий хроматографирования. При одинаковых условиях анализа фактор относительного удерживания является величиной, позволяющей идентифицировать компоненты смеси при помощи соединений-свидетелей.
Количественный анализ разделяемых веществ проводят путем измерения оптической плотности пятна, образующегося при взаимодействии определяемого вещества с цветообразующим реагентом. Тонкослойная хроматография не требует сложной аппаратуры, проста в исполнении и дает надежные результаты при наличии соответствующих свидетелей. Тонкослойная хроматография включена в качестве стандартного метода анализа лекарственных препаратов в Государственную фармакопею России.
Наряду с тонкослойной хроматографией широко используется бумажная хроматография, которая по технике исполнения близка к ТСХ и так же проста. В бумажной хроматограмме неподвижной фазой является вода, входящая в состав бумаги.
Колоночная хроматография широко используется для количественного разделения смесей. В этом случае в верхнюю часть колонки с сорбентом наносят анализируемую смесь и через слой сорбента медленно пропускают подвижную фазу. Этот процесс называют элюированием. Из-за разных сорбционных свойств каждый компонент смеси имеет свое время удерживания, т. е. время прохождения через колонку. Последовательные порции элюента собирают в отдельные емкости, испаряют подвижную фазу, и получается чистый компонент.
В последнее время широкое применение для анализа нелетучих веществ находит высокоэффективная жидкостная хроматография (ВЭЖХ), которая осуществляется с помощью специального хроматографа. В отличие от газовой хроматографии в этом случае через колонку с неподвижной фазой под давлением пропускается жидкая подвижная фаза. В остальном ВЭЖХ подобна газовой хроматографии.
По механизму разделения веществ хроматографию подразделяют на адсорбционную, распределительную (абсорбционную), ионообменную, молекулярно-ситовую и биоспецифическую (аффинную).
В адсорбционной хроматографии вещества разделяются благодаря различию их констант адсорбции в системах газ - твердый адсорбент или жидкость - твердый адсорбент.
В распределительной хроматографии разделение веществ происходит вследствие различия констант распределения при абсорбции веществ из газовой или жидкой подвижной фазы жидкой неподвижной фазой, которая обычно нанесена тонким слоем на твердый носитель.
В ионообменной хроматографии разделение ионов основано на различии их констант ионного обмена между раствором и ионитом.
В молекулярно-ситовой хроматографии (устаревшее название — гель-фильтрация) разделение смеси веществ происходит вследствие различий в размерах их частиц. В качестве неподвижной фазы в этом случае используют вещества, имеющие поры строго определенного размера. К ним относятся цеолиты, декстриновые гели (сефадексы), гели агарозы (полисахариды из агар-агара), полиакриламидные гели. Молекулярно-ситовую хроматографию в основном используют для выделения и очистки белков, нуклеиновых кислот и даже клеток (эритроцитов, лимфоцитов).
Биоспецифическая хроматография основана на уникальной способности некоторых биологических субстратов избирательно взаимодействовать с определенными веществами, например фермента с субстратом, антигена с антителом, гормона с рецептором, благодаря чему достигается их эффективная очистка.
Хроматография широко применяется в медицине и биологии для идентификации веществ, а также для решения большого числа исследовательских, диагностических, клинических, токсикологических задач. Качественный и количественный анализ крови или мочи на присутствие в ней алкоголя, наркотиков, допинга осуществляется с помощью хроматографии за несколько минут. Для диагностики заболеваний желчного пузыря, печени, нарушений сердечной деятельности, заболеваний центральной нервной системы, сахарного диабета, гипертонической болезни определяют хроматографическим анализом качественный состав и количественное соотношение жирных кислот в определенных физиологических средах. В гигиене и санитарии хроматография используется для контроля окружающей среды.
