- •Оглавление
- •Глава 1 16
- •Глава 2 химическая связь 33
- •Глава 3 54
- •Глава 4 82
- •Глава 5 110
- •Глава 6 141
- •Глава 7 173
- •Глава 8 196
- •Глава 9 234
- •Глава 10 комплексные соединения и их свойства 272
- •Глава 11 297
- •Глава 12 316
- •Глава 13 377
- •Глава 14 400
- •Глава 15 основные понятия органической химии 419
- •Глава 16 445
- •Глава 17 474
- •Глава 18 499
- •Глава 19 518
- •Глава 20 562
- •Глава 21 аминокислоты, пептиды и белки 578
- •Глава 22 620
- •Глава 23 651
- •Глава 24 692
- •Глава 25 709
- •Глава 26 740
- •Глава 27 771
- •От автора
- •Глава 1 строение атома, периодический закон и периодическая система элементов д. И. Менделеева
- •1.1. Строение атома
- •1.1.1. Квантовые числа
- •1.1.2. Принципы заполнения атомных орбиталей электронами
- •1.2. Периодический закон и периодическая система элементов д. И. Менделеева
- •1.3. Основные характеристики атомов элементов
- •1.3.1. Радиус атома
- •1.3.2. Энергия ионизации
- •1.3.3. Энергия сродства к электрону
- •1.3.4. Относительная электроотрицательность
- •Глава 2 химическая связь
- •2.1. Ковалентная связь
- •2.1.1. И молекулярные орбитали
- •2.1.2. Механизмы возникновения ковалентной связи
- •2.1.3. Особенности ковалентной связи
- •2.2. Ионная связь
- •2.3. Металлическая связь
- •Глава 3 межмолекулярные взаимодействия и агрегатное состояние вещества
- •3.1. Межмолекулярные взаимодействия
- •3.2. Агрегатное состояние вещества
- •3.2.1. Твердое состояние
- •3.2.2. Жидкое состояние
- •3.2.3. Жидкокристаллическое состояние
- •3.2.4. Паро- и газообразное состояния
- •Глава 4 основы химической термодинамики и биоэнергетики
- •4.1. Основные понятия термодинамики
- •4.2. Первый закон термодинамики
- •4.3. Понятие о самопроизвольных процессах.
- •4.4. Второй закон термодинамики. Энергия гиббса
- •4.5. Принцип энергетического сопряжения биохимических реакций
- •Г лава 5 основы кинетики биохимических реакций и химического равновесия
- •5.1. Основные понятия и терминология раздела
- •5.2. Факторы, влияющие на скорость гомогенных реакций
- •5.2.1. Влияние природы реагирующих веществ
- •5.2.2. Влияние концентрации реагентов.
- •5.2.3. Влияние температуры. Энергия активации
- •5.2.4. Влияние катализатора
- •5.3. Особенности кинетики гетерогенных реакций
- •5.4. Особенности кинетики цепных реакций
- •5.5. Химическое равновесие
- •5.5.1. Смещение химического равновесия
- •5.6. Ферментативный катализ и его особенности
- •5.7. Автоколебательные биохимические процессы
- •Г лава 6 растворы и их коллигативные свойства
- •6.1. Вода как растворитель и ее роль в жизнедеятельности организма
- •6.2. Термодинамика процесса растворения
- •6.З. Способы выражения концентрации растворов
- •6.4. Коллигативные свойства растворов
- •6.4.1. Диффузия
- •6.4.2. Осмос. Осмотическое и онкотическое давление
- •6.4.3. Давление насыщенного пара над раствором
- •6.4.4. Температура кипения и замерзания раствора
- •Глава 7 растворы электролитов и ионные равновесия
- •7.1. Электролитическая диссоциация
- •7.2. Равновесие в растворах слабых электролитов
- •7.2.1. Влияние общего иона и противоиона на равновесие
- •7.2.2. Взаимосвязь константы диссоциации и степени диссоциации
- •7.3. Особенности растворов сильных электролитов. Ионная сила раствора
- •7.4. Электролитическая диссоциация и ионное произведение воды
- •7.5. Водородный и гидроксильный показатели (рН и рОн)
- •7.6. Физико-химические основы водно-электролитного баланса в организме
- •Г лава 8 теория кислот и оснований и протолитические равновесия
- •8.1. Протолитическая теория кислот и оснований
- •8.2. Кислотно-основные свойства а-аминокислот
- •8.3. Важнейшие кислотно-основные реакции
- •8.3.1. Гидролиз солей
- •8.3.2. Реакции нейтрализации
- •8.3.3. Общая, активная и потенциальная кислотность растворов
- •8.4. Протолитический баланс. Буферные растворы и их свойства
- •8.5. Буферные системы организма, их взаимодействие, явления ацидоза и алкалоза
- •9.1. Основные понятия и факторы, влияющие на протекание окислительно-восстановительных реакций
- •9.2. Направление протекания окислительно-восстановительных реакций
- •9.3. Особенности биохимических окислительно-восстановительных процессов в организмах
- •9.3.1. Степень окисления углерода в органических соединениях
- •9.3.2. Биохимические реакции внутри- и межмолекулярной окислительно-восстановительной дисмутации за счет атомов углерода
- •9.3.3. Окислительно-восстановительные превращения кофакторов и коферментов оксидоредуктаз
- •9.3.4. Электронотранспортные цепи
- •9.3.5. Дегидрогеназное окисление-восстановление
- •9.3.6. Окислительное фосфорилирование
- •9.3.7. Фотофосфорилирование
- •9.3.8. Оксигеназное окисление-восстановление
- •9.3.9. Свободнорадикальное окисление и антиоксидантная система организма
- •9.4. Использование окислителей и восстановителей в медико-санитарной практике
- •Глава 10 комплексные соединения и их свойства
- •10.1. Основные понятия и терминология
- •10.2. Химическая связь в комплексных соединениях и особенности их строения
- •10.3. Химические свойства комплексных соединений
- •10.4. Медико-биологическая роль комплексных соединений
- •10.5. Металлолигандный баланс и его нарушения
- •10.6. Комплексонометрия
- •Глава 11 гетерогенные процессы и равновесия в растворах
- •11.1. Основные понятия и теоретические основы
- •11.2. Гетерогенные равновесия в растворах, связанные с процессом кристаллизации
- •11.3. Гетерогенные равновесия в растворах, связанные с процессом расслоения
- •11.4. Гетерогенные равновесия в живых системах
- •Глава 12 химия элементов-органогенов
- •12.2. Строение, химические свойства и роль элементов-органогенов и их соединений в растительном и животном мире
- •12.2.1. Водород и его соединения
- •12.2.2. Углерод и его соединения
- •12.2.3. Азот и его соединения
- •12.2.4. Фосфор и его соединения
- •12.2.5. Кислород и его соединения
- •12.2.6. Сера и ее соединения
- •12.3. Строение и химические свойства галогенов и их соединений
- •Глава 13 химия ионов металлов жизни и их роль в растительном и животном мире
- •13.1. Химия ионов s-металлов в организме
- •13.1.1. Натрий и калий
- •13.1.2. Магний и кальций
- •13.2. Химия ионов d-металлов в организме
- •13.2.1. Марганец
- •13.2.2. Железо и кобальт
- •13.2.3. Медь
- •13.2.4. Цинк
- •13.2.5. Молибден
- •Глава 14 химия и анализ загрязнений окружающей среды
- •14.1. Химия загрязнений атмосферы
- •14.1.1. Токсический смог
- •14.1.2. Фотохимический смог
- •14.1.3. Кислотные дожди
- •14.1.4. Загрязнение атмосферы другими токсикантами
- •14.1.5. Разрушение озонового слоя
- •14.2. Методы анализа токсикантов и методы снижения их поступления в атмосферу
- •14.3. Загрязнение гидросферы. Понятие об общих показателях, характеризующих природные и сточные воды
- •Глава 15 основные понятия органической химии
- •15.1. Основы классификации и номенклатуры органических соединений
- •15.2. Пространственная структура биоорганических молекул и виды изомерии
- •15.3. Понятие о взаимном влиянии атомов в молекуле и электронные эффекты
- •15.4. Классификация органических реакций и их компонентов
- •Г лава 16 алифатические и ароматические углеводороды
- •16.1. Строение и реакционная способность алканов
- •16.2. Строение и реакционная способность ненасыщенных углеводородов: алкенов и диенов
- •16.3. Ароматические углеводороды (арены)
- •Глава 17 спирты, фенолы, простые эфиры, тиолы и сульфиды
- •17.2. Физико-химические свойства спиртов и фенолов
- •17.3. Химические свойства спиртов
- •17.4. Химические свойства фенолов
- •17.5. Простые эфиры
- •17.6. Тиолы и сульфиды
- •Г лава 18 альдегиды, кетоны и их производные
- •18.1. Строение, номенклатура и физико-химические свойства альдегидов и кетонов
- •18.2. Химические свойства альдегидов и кетонов
- •18.2.1. Кислотно-основные свойства
- •18.2.2. Электрофильно-нуклеофильные свойства
- •18.2.3. Окислительно-восстановительные свойства
- •18.2.4. Комплексообразующие свойства
- •18.3. Альдегиды и кетоны в окружающей среде
- •Г лава 19 карбоновые кислоты и их функциональные производные
- •19.2. Химические свойства предельных кислот и их производных
- •19.2.1. Кислотно-основные свойства
- •19.2.2. Карбоновые кислоты как ацилирующие реагенты
- •19.2.3. Производные карбоновых кислот, их свойства и взаимные превращения
- •19.2.4. Окислительно-восстановительные свойства карбоновых кислот и их производных
- •19.3. Особенности свойств замещенных карбоновых кислот и их производных
- •19.3.1. Дикарбоновые кислоты
- •19.3.2. Гидроксикарбоновые кислоты
- •19.3.3. Оксокарбоновые кислоты
- •19.3.4. Ненасыщенные карбоновые кислоты
- •19.4. Основные реакции метаболизма карбоновых кислот
- •19.4.1. Биосинтез жирных кислот
- •1 9.4.2. Биологическое окисление жирных кислот
- •19.4.3. Реакции цикла кребса
- •19.5. Кислоты ароматического ряда и их производные как лекарственные средства
- •Г лава 20 Липиды
- •20.1. Жиры и воски
- •20.2. Омыляемые сложные липиды
- •20.3. Неомыляемые липиды - низкомолекулярные биорегуляторы
- •Глава 21 аминокислоты, пептиды и белки
- •21.1. Строение, классификация и физико-химические свойства а-аминокислот
- •21.2. Химические свойства а-аминокислот
- •21.2.1. Кислотно-основные свойства и прототропная таутомерия
- •21.2.2. К0мплекс00бразующие свойства
- •21.2.3. Электрофильно-нуклеофильные свойства
- •21.2.4. Окислительно-восстановительные свойства
- •21.3. Структура и свойства пептидов
- •21.4. Структура и свойства белков
- •Глава 22 углеводы и полисахариды
- •22.1. Строение, изомерия и свойства моносахаридов
- •22.1.1. Химические свойства моносахаридов и их производных
- •22.1.2. Катаболизм глюкозы - гликолиз
- •22.3. Полисахариды, их структура и свойства
- •22.3.1. Гомополисахариды
- •22.3.2. Гетерополисахариды, протеогликаны, гликопротеины
- •Г лава 23 биологически важные азотсодержащие соединения
- •23.1. Электронные состояния атома азота в его соединениях и свойства этих соединений
- •23.2. Роль аммиака для живых организмов и пути его обезвреживания. Цикл мочевины и ее свойства
- •23.3. Азотсодержащие ароматические гетероциклические соединения
- •23.4. Нуклеозиды, нуклеотиды и нуклеиновые кислоты, их структура и свойства
- •Г лава 24 электрохимия. Электрическая проводимость растворов электролитов
- •24.1. Электрическая подвижность ионов в растворе
- •24.2. Удельная электрическая проводимость растворов электролитов
- •24.3. Молярная электрическая проводимость растворов электролитов
- •24.4. Закон независимого движения ионов в разбавленных растворах (закон кольрауша)
- •24.5. Кондуктометрические методы анализа
- •24.5.1. Кондуктометрическое титрование
- •24.6. Электрическая проводимость биологических объектов в норме и патологии
- •Г лава 25 межфазные электрические потенциалы, гальванические цепи, потенциометрия
- •25.1. Возникновение двойного электрического слоя и виды электрических потенциалов
- •25.2. Электродный потенциал. Стандартный водородный электрод. Гальванические цепи. Уравнение нернста
- •25.3. Восстановительный потенциал
- •25.4. Диффузионный потенциал
- •25.5. Мембранный потенциал
- •25.6. Потенциометрия
- •25.6.1. Хлорсеребряный электрод сравнения
- •25.6.2. Ионо- и молекулярноселективные электроды определения
- •25.6.3. Потенциометрическое титрование
- •Глава 26 физико-химические основы поверхностных явлений
- •26.1. Свободная поверхностная энергия
- •26.2. Сорбция и ее виды
- •26.3. Абсорбция
- •26.4. Адсорбция
- •26.4.1. Адсорбция на неподвижной поверхности раздела фаз
- •26.4.2. Молекулярная адсорбция из растворов на твердых адсорбентах
- •26.4.3. Адсорбция ионов из растворов
- •26.4.4. Ионообменная адсорбция
- •26.5. Адсорбция на подвижной поверхности раздела фаз
- •26.6. Поверхностно-активные вещества
- •26.7. Хроматография
- •Глава 27 физикохимия дисперсных систем
- •27.2. Лиофобные коллоидные растворы
- •27.2.1. Строение мицелл в лиофобных коллоидных растворах
- •27.2.2. Свойства лиофобных коллоидных растворов
- •27.2.3. Влияние высокомолекулярных соединений на устойчивость лиофобных коллоидов. Флокуляция
- •27.3. Лиофильные коллоидные растворы
- •27.3.1. Строение мицелл пав и вмс в водных коллоидных растворах в зависимости от их концентрации
- •27. 3. 2. Получение и свойства лиофильных коллоидных растворов
- •27.3.3. Моющее действие растворов пав
- •27.3.4. Особенности растворов биополимеров
- •27.4. Структурообразование в растворах вмс. Возникновение связнодисперсных систем и их свойства
- •27.5. Грубодисперсные системы
- •27.5.1. Суспензии
- •27.5.2. Эмульсии
- •27.5.3. Аэрозоли
- •27.6. Электрокинетические явления в дисперсных системах
- •27.7. Ткани организма - дисперсные системы
- •27.7.1. Строение и свойства межклеточных мембран
- •27.7.2. Кровь - сложная дисперсная система
- •Приложение 1 применение осмолярной и осмоляльной концентраций в практической медицине
3.2. Агрегатное состояние вещества
Любое вещество состоит из совокупности очень большого числа частиц: атомов, молекул, ионов, которые могут объединяться между собой в ассоциаты, называемые также агрегатами или кластерами. В зависимости от температуры и поведения частиц в ассоциатах (взаимное расположение частиц, их число и взаимодействие в ассоциате, а также распределение ассоциатов в пространстве и их взаимодействие между собой) вещество может находиться, по мнению автора, в двух основных агрегатных состояниях - кристаллическом (твердом) или газообразном, и в переходных агрегатных состояниях - аморфном (твердом), жидкокристаллическом, жидком и парообразном (табл. 3.2). Твердое, жидкокристаллическое и жидкое агрегатные со стояния являются конденсированными, а парообразное и газообразное - сильно разреженными. Для того чтобы понять различие между основными и переходными агрегатными состояниями вещества, автор предлагает учитывать следующие различия между понятиями фаза и мезофаза.
Фаза - это совокупность однородных микрообластей, характеризующихся одинаковой упорядоченностью и концентрацией частиц и заключенных в макроскопическом объеме вещества, ограниченном поверхностью раздела. В таком понимании фаза характерна только для веществ, находящихся в кристаллическом и газообразном состояниях, так как это однородные агрегатные состояния.
Мезофаза — это совокупность разнородных микрообластей, отличающихся друг от друга степенью упорядоченности частиц или их концентрацией и заключенных в макроскопическом объеме вещества, ограниченном поверхностью раздела.
Приставка "мезо" в переводе с греческого означает промежуточное, среднее, поэтому понятие "мезофаза" используется для характеристики переходных неоднородных агрегатных состояний. Понятия "фаза" и "мезофаза" не относятся к субмикрообластям (r * 10-8 м) в структуре вещества и к системам с очень развитой поверхностью раздела.
Разные фазы и мезофазы могут смешиваться друг с другом, образуя одно агрегатное состояние, и тогда между ними нет поверхности раздела. Если же разные фазы и мезофазы не смешиваются между собой, то между ними будет поверхность раздела, где свойства системы резко изменяются. Смешение фаз или мезофаз подчиняется правилу "подобное в подобном". Так, вода (полярная жидкость) хорошо смешивается с веществами, молекулы которых полярны, например НС1, С2Н5ОН, NaCl, образуя растворы, находящиеся в жидком агрегатном состоянии. В то же время вода практически не смешивается с неполярными жидкостями: бензином, керосином, минеральными и растительными маслами, образуя с ними сложную систему из двух несмешивающихся жидкостей, разделенных между собой поверхностью раздела. Другой пример: лед, вода и пар - разные агрегатные состояния одного и того же вещества, резко различающиеся по структуре; они не смешиваются друг с другом, и между ними есть поверхность раздела.
Обычно не разделяют понятия "основное" и "переходное" агрегатные состояния, а понятия "агрегатное состояние", "фаза" и "мезофаза" часто используются как синонимы. Последнее будет использоваться и в данном учебнике, но при этом автор считает целесообразным рассматривать для состояния веществ пять возможных агрегатных состояний: твердое, жидкокристаллическое, жидкое, парообразное и газообразное. Кроме того, зная приведенные различия между понятиями фаза и мезофаза, легче разобраться в типах фазовых переходов.
Переход одной фазы в другую фазу или фазы в мезофазу, а также переход одной мезофазы в другую мезофазу в пределах даже одного агрегатного состояния называется фазовым переходом. Различают фазовые переходы первого и второго рода.
Фазовые переходы первого рода характеризуются:
скачкообразным изменением физических величин, описывающих состояние вещества (таких как объем, плотность, вязкость; см. рис. 3.2);
определенной температурой, при которой совершается данный фазовы переход (T начала плавления, T плавления (просветления), T кипения);
определенной теплотой, характеризующей данный переход, так как при этом рвутся или образуются межмолекулярные связи. Например, переход из твердого в жидкое состояние характеризуется теплотой плавления, а из жидкого в парообразное состояние - теплотой испарения.
Фазовые переходы первого рода наблюдаются при переходе из одного агрегатного состояния в другое агрегатное состояние.
Рис.
3.2. Изменение объема вещества при фазовых
переходах первого рода
азовые
переходы второго рода наблюдаются
при изменении упорядоченности частиц
в пределах одного агрегатного состояния.
Например, изменение структуры мезофазы
вещества, находящегося в жидкокристаллическом
состоянии, или переход ферромагнетика
в парамагнетик в твердом состоянии. В
живых системах фазовые переходы второго
рода часто происходят при некоторых
конформационных изменениях в белках,
нуклеиновых кислотах, внутри- и
межклеточных мембранах, которые
сопровождаются изменением биологических
и физиологических функций этих систем.
Для фазовых переходов второго рода характерно:
постепенное изменение физических свойств вещества;
изменение упорядоченности частиц вещества под действием градиента внешних полей или при определенной температуре, называемой температурой фазового перехода;
теплота фазовых переходов второго рода равна или близка
к нулю.
Таким образом, главное различие фазовых переходов первого и второго рода заключается в том, что при переходах первого рода прежде всего изменяется энергия частиц системы, а в случае переходов второго рода - упорядоченность частиц системы (разд. 4.4).
Большинство веществ в зависимости от температуры и давления может существовать в твердом, жидком, парообразном и газообразном состояниях, а некоторые и в жидкокристаллическом. Об этом состоянии и его особенностях см. разд. 3.2.3. Переход вещества из твердого состояния в жидкое называется плавлением и характеризуется температурой плавления (Тпл), которую еще называют температурой просветления, так как при ней вещество становится однородной прозрачной жидкостью. Переход вещества из жидкого в парообразное состояние называется испарением и характеризуется температурой кипения (TКИП), при которой давление насыщенного пара равно внешнему давлению. Переход пара в газ характеризуется критической температурой (Ткрит). Для некоторых веществ с небольшой молекулярной массой и слабым межмолекулярным взаимодействием возможен непосредственный переход из твердого состояния в парообразное, минуя жидкое. Такой переход называется сублимацией. Все перечисленные процессы могут протекать и в обратном направлении: тогда их называют замерзанием, конденсацией и десублимацией.
Вещества,
не разлагающиеся при плавлении и кипении,
могут находиться во всех четырех
агрегатных состояниях в зависимости
от температуры и давления, что отображается
фазовой диаграммой воды в координатах
р
- Т (табл.
3.3). Твердое, жидкое и парообразное
состояния могут одновременно
сосуществовать в равновесии между
собой только при определенных для
каждого вещества температуре и давлении,
т. е. в тройной точке, которой соответствует
Tпл
= Tкип
. При
других значениях температуры и давления
имеют место различные равновесия
твердая
пар
(линия
сублимации), твердая
жидкая
(линия
плавления) и жидкая
пар
(линия
испарения), как показано на фазовой
диаграмме воды (табл. 3.3). В критической
точке при Tкрит
и ркрит
различие в свойствах жидкости, пара и
газа исчезает, а также исчезает и граница
раздела между ними.
Рассмотрим особенности поведения частиц в каждом агрегатном состоянии.
