- •Оглавление
- •Глава 1 16
- •Глава 2 химическая связь 33
- •Глава 3 54
- •Глава 4 82
- •Глава 5 110
- •Глава 6 141
- •Глава 7 173
- •Глава 8 196
- •Глава 9 234
- •Глава 10 комплексные соединения и их свойства 272
- •Глава 11 297
- •Глава 12 316
- •Глава 13 377
- •Глава 14 400
- •Глава 15 основные понятия органической химии 419
- •Глава 16 445
- •Глава 17 474
- •Глава 18 499
- •Глава 19 518
- •Глава 20 562
- •Глава 21 аминокислоты, пептиды и белки 578
- •Глава 22 620
- •Глава 23 651
- •Глава 24 692
- •Глава 25 709
- •Глава 26 740
- •Глава 27 771
- •От автора
- •Глава 1 строение атома, периодический закон и периодическая система элементов д. И. Менделеева
- •1.1. Строение атома
- •1.1.1. Квантовые числа
- •1.1.2. Принципы заполнения атомных орбиталей электронами
- •1.2. Периодический закон и периодическая система элементов д. И. Менделеева
- •1.3. Основные характеристики атомов элементов
- •1.3.1. Радиус атома
- •1.3.2. Энергия ионизации
- •1.3.3. Энергия сродства к электрону
- •1.3.4. Относительная электроотрицательность
- •Глава 2 химическая связь
- •2.1. Ковалентная связь
- •2.1.1. И молекулярные орбитали
- •2.1.2. Механизмы возникновения ковалентной связи
- •2.1.3. Особенности ковалентной связи
- •2.2. Ионная связь
- •2.3. Металлическая связь
- •Глава 3 межмолекулярные взаимодействия и агрегатное состояние вещества
- •3.1. Межмолекулярные взаимодействия
- •3.2. Агрегатное состояние вещества
- •3.2.1. Твердое состояние
- •3.2.2. Жидкое состояние
- •3.2.3. Жидкокристаллическое состояние
- •3.2.4. Паро- и газообразное состояния
- •Глава 4 основы химической термодинамики и биоэнергетики
- •4.1. Основные понятия термодинамики
- •4.2. Первый закон термодинамики
- •4.3. Понятие о самопроизвольных процессах.
- •4.4. Второй закон термодинамики. Энергия гиббса
- •4.5. Принцип энергетического сопряжения биохимических реакций
- •Г лава 5 основы кинетики биохимических реакций и химического равновесия
- •5.1. Основные понятия и терминология раздела
- •5.2. Факторы, влияющие на скорость гомогенных реакций
- •5.2.1. Влияние природы реагирующих веществ
- •5.2.2. Влияние концентрации реагентов.
- •5.2.3. Влияние температуры. Энергия активации
- •5.2.4. Влияние катализатора
- •5.3. Особенности кинетики гетерогенных реакций
- •5.4. Особенности кинетики цепных реакций
- •5.5. Химическое равновесие
- •5.5.1. Смещение химического равновесия
- •5.6. Ферментативный катализ и его особенности
- •5.7. Автоколебательные биохимические процессы
- •Г лава 6 растворы и их коллигативные свойства
- •6.1. Вода как растворитель и ее роль в жизнедеятельности организма
- •6.2. Термодинамика процесса растворения
- •6.З. Способы выражения концентрации растворов
- •6.4. Коллигативные свойства растворов
- •6.4.1. Диффузия
- •6.4.2. Осмос. Осмотическое и онкотическое давление
- •6.4.3. Давление насыщенного пара над раствором
- •6.4.4. Температура кипения и замерзания раствора
- •Глава 7 растворы электролитов и ионные равновесия
- •7.1. Электролитическая диссоциация
- •7.2. Равновесие в растворах слабых электролитов
- •7.2.1. Влияние общего иона и противоиона на равновесие
- •7.2.2. Взаимосвязь константы диссоциации и степени диссоциации
- •7.3. Особенности растворов сильных электролитов. Ионная сила раствора
- •7.4. Электролитическая диссоциация и ионное произведение воды
- •7.5. Водородный и гидроксильный показатели (рН и рОн)
- •7.6. Физико-химические основы водно-электролитного баланса в организме
- •Г лава 8 теория кислот и оснований и протолитические равновесия
- •8.1. Протолитическая теория кислот и оснований
- •8.2. Кислотно-основные свойства а-аминокислот
- •8.3. Важнейшие кислотно-основные реакции
- •8.3.1. Гидролиз солей
- •8.3.2. Реакции нейтрализации
- •8.3.3. Общая, активная и потенциальная кислотность растворов
- •8.4. Протолитический баланс. Буферные растворы и их свойства
- •8.5. Буферные системы организма, их взаимодействие, явления ацидоза и алкалоза
- •9.1. Основные понятия и факторы, влияющие на протекание окислительно-восстановительных реакций
- •9.2. Направление протекания окислительно-восстановительных реакций
- •9.3. Особенности биохимических окислительно-восстановительных процессов в организмах
- •9.3.1. Степень окисления углерода в органических соединениях
- •9.3.2. Биохимические реакции внутри- и межмолекулярной окислительно-восстановительной дисмутации за счет атомов углерода
- •9.3.3. Окислительно-восстановительные превращения кофакторов и коферментов оксидоредуктаз
- •9.3.4. Электронотранспортные цепи
- •9.3.5. Дегидрогеназное окисление-восстановление
- •9.3.6. Окислительное фосфорилирование
- •9.3.7. Фотофосфорилирование
- •9.3.8. Оксигеназное окисление-восстановление
- •9.3.9. Свободнорадикальное окисление и антиоксидантная система организма
- •9.4. Использование окислителей и восстановителей в медико-санитарной практике
- •Глава 10 комплексные соединения и их свойства
- •10.1. Основные понятия и терминология
- •10.2. Химическая связь в комплексных соединениях и особенности их строения
- •10.3. Химические свойства комплексных соединений
- •10.4. Медико-биологическая роль комплексных соединений
- •10.5. Металлолигандный баланс и его нарушения
- •10.6. Комплексонометрия
- •Глава 11 гетерогенные процессы и равновесия в растворах
- •11.1. Основные понятия и теоретические основы
- •11.2. Гетерогенные равновесия в растворах, связанные с процессом кристаллизации
- •11.3. Гетерогенные равновесия в растворах, связанные с процессом расслоения
- •11.4. Гетерогенные равновесия в живых системах
- •Глава 12 химия элементов-органогенов
- •12.2. Строение, химические свойства и роль элементов-органогенов и их соединений в растительном и животном мире
- •12.2.1. Водород и его соединения
- •12.2.2. Углерод и его соединения
- •12.2.3. Азот и его соединения
- •12.2.4. Фосфор и его соединения
- •12.2.5. Кислород и его соединения
- •12.2.6. Сера и ее соединения
- •12.3. Строение и химические свойства галогенов и их соединений
- •Глава 13 химия ионов металлов жизни и их роль в растительном и животном мире
- •13.1. Химия ионов s-металлов в организме
- •13.1.1. Натрий и калий
- •13.1.2. Магний и кальций
- •13.2. Химия ионов d-металлов в организме
- •13.2.1. Марганец
- •13.2.2. Железо и кобальт
- •13.2.3. Медь
- •13.2.4. Цинк
- •13.2.5. Молибден
- •Глава 14 химия и анализ загрязнений окружающей среды
- •14.1. Химия загрязнений атмосферы
- •14.1.1. Токсический смог
- •14.1.2. Фотохимический смог
- •14.1.3. Кислотные дожди
- •14.1.4. Загрязнение атмосферы другими токсикантами
- •14.1.5. Разрушение озонового слоя
- •14.2. Методы анализа токсикантов и методы снижения их поступления в атмосферу
- •14.3. Загрязнение гидросферы. Понятие об общих показателях, характеризующих природные и сточные воды
- •Глава 15 основные понятия органической химии
- •15.1. Основы классификации и номенклатуры органических соединений
- •15.2. Пространственная структура биоорганических молекул и виды изомерии
- •15.3. Понятие о взаимном влиянии атомов в молекуле и электронные эффекты
- •15.4. Классификация органических реакций и их компонентов
- •Г лава 16 алифатические и ароматические углеводороды
- •16.1. Строение и реакционная способность алканов
- •16.2. Строение и реакционная способность ненасыщенных углеводородов: алкенов и диенов
- •16.3. Ароматические углеводороды (арены)
- •Глава 17 спирты, фенолы, простые эфиры, тиолы и сульфиды
- •17.2. Физико-химические свойства спиртов и фенолов
- •17.3. Химические свойства спиртов
- •17.4. Химические свойства фенолов
- •17.5. Простые эфиры
- •17.6. Тиолы и сульфиды
- •Г лава 18 альдегиды, кетоны и их производные
- •18.1. Строение, номенклатура и физико-химические свойства альдегидов и кетонов
- •18.2. Химические свойства альдегидов и кетонов
- •18.2.1. Кислотно-основные свойства
- •18.2.2. Электрофильно-нуклеофильные свойства
- •18.2.3. Окислительно-восстановительные свойства
- •18.2.4. Комплексообразующие свойства
- •18.3. Альдегиды и кетоны в окружающей среде
- •Г лава 19 карбоновые кислоты и их функциональные производные
- •19.2. Химические свойства предельных кислот и их производных
- •19.2.1. Кислотно-основные свойства
- •19.2.2. Карбоновые кислоты как ацилирующие реагенты
- •19.2.3. Производные карбоновых кислот, их свойства и взаимные превращения
- •19.2.4. Окислительно-восстановительные свойства карбоновых кислот и их производных
- •19.3. Особенности свойств замещенных карбоновых кислот и их производных
- •19.3.1. Дикарбоновые кислоты
- •19.3.2. Гидроксикарбоновые кислоты
- •19.3.3. Оксокарбоновые кислоты
- •19.3.4. Ненасыщенные карбоновые кислоты
- •19.4. Основные реакции метаболизма карбоновых кислот
- •19.4.1. Биосинтез жирных кислот
- •1 9.4.2. Биологическое окисление жирных кислот
- •19.4.3. Реакции цикла кребса
- •19.5. Кислоты ароматического ряда и их производные как лекарственные средства
- •Г лава 20 Липиды
- •20.1. Жиры и воски
- •20.2. Омыляемые сложные липиды
- •20.3. Неомыляемые липиды - низкомолекулярные биорегуляторы
- •Глава 21 аминокислоты, пептиды и белки
- •21.1. Строение, классификация и физико-химические свойства а-аминокислот
- •21.2. Химические свойства а-аминокислот
- •21.2.1. Кислотно-основные свойства и прототропная таутомерия
- •21.2.2. К0мплекс00бразующие свойства
- •21.2.3. Электрофильно-нуклеофильные свойства
- •21.2.4. Окислительно-восстановительные свойства
- •21.3. Структура и свойства пептидов
- •21.4. Структура и свойства белков
- •Глава 22 углеводы и полисахариды
- •22.1. Строение, изомерия и свойства моносахаридов
- •22.1.1. Химические свойства моносахаридов и их производных
- •22.1.2. Катаболизм глюкозы - гликолиз
- •22.3. Полисахариды, их структура и свойства
- •22.3.1. Гомополисахариды
- •22.3.2. Гетерополисахариды, протеогликаны, гликопротеины
- •Г лава 23 биологически важные азотсодержащие соединения
- •23.1. Электронные состояния атома азота в его соединениях и свойства этих соединений
- •23.2. Роль аммиака для живых организмов и пути его обезвреживания. Цикл мочевины и ее свойства
- •23.3. Азотсодержащие ароматические гетероциклические соединения
- •23.4. Нуклеозиды, нуклеотиды и нуклеиновые кислоты, их структура и свойства
- •Г лава 24 электрохимия. Электрическая проводимость растворов электролитов
- •24.1. Электрическая подвижность ионов в растворе
- •24.2. Удельная электрическая проводимость растворов электролитов
- •24.3. Молярная электрическая проводимость растворов электролитов
- •24.4. Закон независимого движения ионов в разбавленных растворах (закон кольрауша)
- •24.5. Кондуктометрические методы анализа
- •24.5.1. Кондуктометрическое титрование
- •24.6. Электрическая проводимость биологических объектов в норме и патологии
- •Г лава 25 межфазные электрические потенциалы, гальванические цепи, потенциометрия
- •25.1. Возникновение двойного электрического слоя и виды электрических потенциалов
- •25.2. Электродный потенциал. Стандартный водородный электрод. Гальванические цепи. Уравнение нернста
- •25.3. Восстановительный потенциал
- •25.4. Диффузионный потенциал
- •25.5. Мембранный потенциал
- •25.6. Потенциометрия
- •25.6.1. Хлорсеребряный электрод сравнения
- •25.6.2. Ионо- и молекулярноселективные электроды определения
- •25.6.3. Потенциометрическое титрование
- •Глава 26 физико-химические основы поверхностных явлений
- •26.1. Свободная поверхностная энергия
- •26.2. Сорбция и ее виды
- •26.3. Абсорбция
- •26.4. Адсорбция
- •26.4.1. Адсорбция на неподвижной поверхности раздела фаз
- •26.4.2. Молекулярная адсорбция из растворов на твердых адсорбентах
- •26.4.3. Адсорбция ионов из растворов
- •26.4.4. Ионообменная адсорбция
- •26.5. Адсорбция на подвижной поверхности раздела фаз
- •26.6. Поверхностно-активные вещества
- •26.7. Хроматография
- •Глава 27 физикохимия дисперсных систем
- •27.2. Лиофобные коллоидные растворы
- •27.2.1. Строение мицелл в лиофобных коллоидных растворах
- •27.2.2. Свойства лиофобных коллоидных растворов
- •27.2.3. Влияние высокомолекулярных соединений на устойчивость лиофобных коллоидов. Флокуляция
- •27.3. Лиофильные коллоидные растворы
- •27.3.1. Строение мицелл пав и вмс в водных коллоидных растворах в зависимости от их концентрации
- •27. 3. 2. Получение и свойства лиофильных коллоидных растворов
- •27.3.3. Моющее действие растворов пав
- •27.3.4. Особенности растворов биополимеров
- •27.4. Структурообразование в растворах вмс. Возникновение связнодисперсных систем и их свойства
- •27.5. Грубодисперсные системы
- •27.5.1. Суспензии
- •27.5.2. Эмульсии
- •27.5.3. Аэрозоли
- •27.6. Электрокинетические явления в дисперсных системах
- •27.7. Ткани организма - дисперсные системы
- •27.7.1. Строение и свойства межклеточных мембран
- •27.7.2. Кровь - сложная дисперсная система
- •Приложение 1 применение осмолярной и осмоляльной концентраций в практической медицине
25.4. Диффузионный потенциал
Протекание многих биологических процессов связано с изменением концентраций (активностей) ионов в клетках и тканях живых организмов. Неравномерное распределение ионов в какой-либо жидкой среде обычно приводит к их направленному движению и возникновению диффузионного потенциала.
Диффузионным потенциалом называется потенциал, возникающий на границе раздела двух растворов, содержащих один и тот же электролит различной концентрации, или двух растворов разных электролитов вследствие различия в подвижности их катионов и анионов.
Р
ассмотрим
процесс, протекающий на границе двух
растворов соляной кислоты разной
концентрации:
(рис.
25.5).
Рис. 25.5. Возникновение диффузионного потенциала
При соприкосновении растворов ионы Н+ и Сl- из более концентрированного раствора благодаря диффузии будут перемещаться в разбавленный раствор. Поскольку известно (разд. 24.2), что подвижность ионов Н+ значительно больше, чем ионов Сl-, то в разбавленный раствор в единицу времени ио нов Н+ переместится больше, чем ионов Сl- . В результате этого разбавленный раствор у поверхности раздела зарядится положительно за счет более быстрых ионов Н+, а концентрированный раствор - отрицательно за счет медленных ионов Сl-. Таким образом, на границе раздела двух растворов НСl образуется ДЭС, который постепенно движется в сторону разбавленного раствора и существует до тех пор, пока концентрации ионов не выровняются по всему объему и не исчезнет их направленное движение.
Двойной электрический слой, образовавшийся на границе раздела двух растворов электролитов, имеющих одинаковые по величине заряды катиона и аниона (НСl, KN03, CuS04), характеризуется диффузионным потенциалом фд, который можно рассчитать по следующему уравнению:
где и°(+) и и°(-) — подвижности катионов и анионов, м2/(В • с); с1, с2 - концентрации электролита в соприкасающихся растворах, моль/л.
Величина
фд
обычно невелика и не превышает 0,1 В. Если
подвижности катионов и анионов
близки
то
фд
-> 0. В гальванических
цепях величину диффузионного потенциала,
возникающего на границе растворов,
сводят к нулю, применяя для электролитического
мостика растворы таких электролитов,
у которых подвижности ионов примерно
одинаковы: КСl,
KNO3,
NH4N03.
В биологических системах диффузионный потенциал проявляется при механическом повреждении клеток. Из места повреждения ионы перемещаются в межклеточную жидкость, в результате возникает диффузионный потенциал.
25.5. Мембранный потенциал
Диффузионный потенциал на границе двух растворов постепенно уменьшается в результате выравнивания концентраций. Стабилизировать потенциал, возникающий на границе раздела жидкость - жидкость, можно, если соприкасающиеся растворы разделить мембраной с избирательной проницаемостью (полупроницаемой). Такая мембрана способна избирательно пропускать те или иные ионы и молекулы, в результате чего возникает мембранный потенциал - фм.
Мембранным потенциалом называется потенциал, возпикающий между сторонами мембраны с избирательной проницаемостью, разделяющей два раствора различного co става.
В
еличину
мембранного потенциала можно определить,
составив гальваническую цепь, в
которой в растворы, разделенные
мембраной с избирательной проницаемостью,
опущены два электрода сравнения:
ЭДС такой гальванической цепи характеризует величину мембранного потенциала.
Мембранный потенциал зависит от отношения активностей ионов в растворах, разделенных мембраной, и от свойств мембраны. Мембраны характеризуются проницаемостью, т. е. способностью пропускать определенные виды ионов, которые являются потенциалопределяющими в возникновении данного мембранного потенциала. Проницаемость мембраны для разных ионов X и Y характеризуется коэффициентами проницаемости Р(Х) и P(Y). Рассчитать значение мембранного потенциала для мембраны, проницаемой для двух видов ионов, можно по следующему уравнению:
где анар(Х), авн(Х), aнap(Y), aBH(Y) - активность потенциал определяющих ионов X и Y в растворах снаружи и внутри клетки; Р(Х), P(Y) -коэффициент проницаемости мембраны для ионов X и Y.
Для живых клеток, особенно для клеток нервной системы, важное значение имеет различие в концентрациях ионов К+ и Na+ внутри и снаружи клетки, поэтому эти ионы являются птенциалопределяющими для клеток нервной системы:
Ионы |
авн(Х), ммоль/л |
aнар(X), ммоль/л |
авн(Х)/анар(Х) |
P(K+)/P(Na+) |
|
покой |
возбуждение |
||||
к+ Na+ |
400 50 |
20 440 |
20 1/9 |
100 1/12 |
|
Через клеточную мембрану ионы К+ и Na+ самопроизвольно передвигаются по ионным каналам в соответствии с градиентом концентраций. В состоянии покоя в мембране в основном открыты каналы для прохождения ионов К+ и практически закрыты натриевые каналы. При возбуждении - наоборот: открыты главным образом каналы для ионов Na+ и почти полностью закрыты для ионов К+. Таким образом, проницаемость клеточной мембраны для ионов К+ и Na+ зависит от ее состояния: покой или возбуждение - и характеризуется различным отношением коэффициентов проницаемости для этих ионов P(K+)/P(Na+).
Избирательная проницаемость клеточной мембраны и разница в активности ионов Na+ и К+ по обе стороны от нее приводят к установлению мембранного потенциала (рис. 25.6).
В покое ионы К+ из внутриклеточного раствора, где их концентрация в 20 раз выше, чем снаружи, переходят через клеточную мембрану в наружный раствор. При этом наружная поверхность мембраны заряжается положительно за счет перешедших ионов К+, а внутренняя поверхность - отрицательно за счет избытка органических анионов, оставшихся внутри клетки. Таким образом, возникает мембранный потенциал покоя фпок, препятствующий дальнейшему выходу ионов К+ из внутриклеточного в наружный раствор и установлению равновесия в их движении.
Потенциалом покоя называется мембранный потенциал, возникающий между внутренней и наружной сто-I ронами клеточной мембраны, находящейся в невозбужденном состоянии.
Определить потенциал покоя можно с помощью двух микроэлектродов сравнения, вводимых внутрь клетки и в наружный раствор. Измеренное значение фпок для различных клеток лежит в пределах от -70 до -90 мВ. Знак минус говорит о том, что внутренняя поверхность мембраны заряжежа отрицательно. Учитывая активности ионов Na+ и К+ внутри клетки и снаружи, а также отношение коэффициентов проницаемости мембраны для этих ионов, вычислим потенциал покоя:
Расчетное значение фпок хорошо согласуется с: экспериментально измеряемым.
При раздражении клетки химическим, электрическим или механическим воздействием она переходит в возбужденное состояние, при этом проницаемость ее мембраны для ионов Na+ становится значительно выше, чем для К+. Поэтому ионы Na+ из наружного раствора, где их концентрация в 9 раз выше, чем внутри клетки, устремляются через клеточную мембрану во внутренний раствор. Ионы Na+ переносят положительный заряд с наружной поверхности мембраны и перезаряжают ее внутреннюю поверхность, меняя знак заряда с "-" на "+" и вызывая быструю деполяризацию мембраны (рис. 25.6). При этом на короткое время (< 10-3 с) мембранный потенциал становится равным примерно +40 - +60 мВ, что полностью согласуется с экспериментальными и расчетными данными. После прекращения возбуждения мембрана вновь становится проницаемой для ионов К+ и непроницаемой для Na+. Ионы К+ опять выходят из клетки в соответствии с градиентом концентрации, унося с собой положительный заряд до тех пор, пока на мембране не восстановится потенциал покоя, т. е. не произойдет реполяризация мембраны.
Таким образом, при возбуждении клеточной мембраны за (1-2) • 10-3 с ее потенциал с отрицательного значения (= -80 мВ)
Рис. 25.6. Возникновение мембранных потенциалов покоя и действия
меняется на положительный (< +50 мВ), а затем вновь возвращается к первоначальному значению.
Потенциалом действия называется амплитуда колебания (деполяризация и реполяризация) мембранного потенциала, возникающая при возбуждении клеточной мембраны.
На рис. 25.6 схематично показано возникновение потенциала действия в клетке. Амплитуда колебания потенциала составляет примерно 120-140 мВ.
Потенциал действия, возникнув на одном участке клетки, вызывает возбуждение соседних участков и распространяется по всей поверхности мембраны со скоростью 1-110 м/с.
Количество ионов К+ и Na+, проходящих через мембрану во время генерации потенциала действия, составляет не более чем 1 • 10-7 от количества этих ионов внутри клетки, но даже и при прохождении большого числа импульсов концентрации ионов К+ и Na+ в растворах по обе стороны мембраны остаются практически постоянными. Это происходит потому, что в мембране клетки действует Na+/K+-нacoc. Он, используя энергию АТФ, выкачивает из клетки ионы Na+ и накачивает в нее ионы К+ (в соотношении 3 : 2) против градиента концентраций этих ионов (разд. 13.1.1).
Следует отметить, что в общем случае возникновение потенциала покоя и генерация потенциала действия на мембранах различных клеток связаны с переходом через мембрану не только ионов К+ и Na+, но также Са2+, С1-, Н+ и других ионов.
Изучение биомембран мышечных и секреторных клеток показало, что у многих из них потенциал покоя возникает за счет перемещения ионов Na+, а потенциал действия имеет кальциевую природу. В этом случае генерация потенциала действия происходит при возбуждении в результате открывания кальциевых каналов и перемещения ионов Са2+ внутрь клетки, что приводит к сокращению мышцы или к выбросу секрета.
Современные исследования биологических внутриклеточных мембран показали, что на них возникает протонный потенциал из-за различия в концентрациях ионов водорода в растворах, разделенных этими мембранами (разд. 9.3.4). Протонный потенциал при условии проницаемости внутриклеточной мембраны только для ионов Н+ можно вычислить по уравнению для расчета мембранного потенциала, введя в него водородный показатель рН = -lg а(Н+).
Установлено, что протонный потенциал может служить источником энергии для всех видов работ, характерных для живой системы: химической, осмотической, механической, - и источником теплоты.
Следует отметить, что работа клеток нарушается, если изменяется ионная проницаемость клеточных мембран. Подобное может происходить, например, под действием некоторых ядов: в нервных клетках при возбуждении блокируются каналы для прохождения ионов Na+, и поэтому прекращается генерация и передача потенциала действия вдоль нервного волокна. Этим и объясняется токсическое действие ядов на нервную систему организма (разд. 11.4).
Генерирование мембранного потенциала связано с работой сердца, мозга, мышц. Электрические потенциалы, возникающие при деятельности сердца, можно регистрировать с помощью электрокардиографа на электрокардиограмме. ЭКГ - важнейшая характеристика сердечной деятельности. Биоэлектрические потенциалы мозга регистрируются на электроэнцефалограмме, мышц - на электромиограмме, желудка - на электрогастрограмме и т. д.
Избирательная проницаемость мембран относительно определенного вида ионов и зависимость мембранного потенциала от концентрации этих потениалопределяющих ионов лежат в основе работы ионоселективных электродов. Эти электроды позволяют измерять концентрацию данного потенциалопределяющего иона в исследуемой системе по величине возникающего мембранного потенциала на электроде. Ионоселективные электроды широко используются в потенциометрии.
