- •Оглавление
- •Глава 1 16
- •Глава 2 химическая связь 33
- •Глава 3 54
- •Глава 4 82
- •Глава 5 110
- •Глава 6 141
- •Глава 7 173
- •Глава 8 196
- •Глава 9 234
- •Глава 10 комплексные соединения и их свойства 272
- •Глава 11 297
- •Глава 12 316
- •Глава 13 377
- •Глава 14 400
- •Глава 15 основные понятия органической химии 419
- •Глава 16 445
- •Глава 17 474
- •Глава 18 499
- •Глава 19 518
- •Глава 20 562
- •Глава 21 аминокислоты, пептиды и белки 578
- •Глава 22 620
- •Глава 23 651
- •Глава 24 692
- •Глава 25 709
- •Глава 26 740
- •Глава 27 771
- •От автора
- •Глава 1 строение атома, периодический закон и периодическая система элементов д. И. Менделеева
- •1.1. Строение атома
- •1.1.1. Квантовые числа
- •1.1.2. Принципы заполнения атомных орбиталей электронами
- •1.2. Периодический закон и периодическая система элементов д. И. Менделеева
- •1.3. Основные характеристики атомов элементов
- •1.3.1. Радиус атома
- •1.3.2. Энергия ионизации
- •1.3.3. Энергия сродства к электрону
- •1.3.4. Относительная электроотрицательность
- •Глава 2 химическая связь
- •2.1. Ковалентная связь
- •2.1.1. И молекулярные орбитали
- •2.1.2. Механизмы возникновения ковалентной связи
- •2.1.3. Особенности ковалентной связи
- •2.2. Ионная связь
- •2.3. Металлическая связь
- •Глава 3 межмолекулярные взаимодействия и агрегатное состояние вещества
- •3.1. Межмолекулярные взаимодействия
- •3.2. Агрегатное состояние вещества
- •3.2.1. Твердое состояние
- •3.2.2. Жидкое состояние
- •3.2.3. Жидкокристаллическое состояние
- •3.2.4. Паро- и газообразное состояния
- •Глава 4 основы химической термодинамики и биоэнергетики
- •4.1. Основные понятия термодинамики
- •4.2. Первый закон термодинамики
- •4.3. Понятие о самопроизвольных процессах.
- •4.4. Второй закон термодинамики. Энергия гиббса
- •4.5. Принцип энергетического сопряжения биохимических реакций
- •Г лава 5 основы кинетики биохимических реакций и химического равновесия
- •5.1. Основные понятия и терминология раздела
- •5.2. Факторы, влияющие на скорость гомогенных реакций
- •5.2.1. Влияние природы реагирующих веществ
- •5.2.2. Влияние концентрации реагентов.
- •5.2.3. Влияние температуры. Энергия активации
- •5.2.4. Влияние катализатора
- •5.3. Особенности кинетики гетерогенных реакций
- •5.4. Особенности кинетики цепных реакций
- •5.5. Химическое равновесие
- •5.5.1. Смещение химического равновесия
- •5.6. Ферментативный катализ и его особенности
- •5.7. Автоколебательные биохимические процессы
- •Г лава 6 растворы и их коллигативные свойства
- •6.1. Вода как растворитель и ее роль в жизнедеятельности организма
- •6.2. Термодинамика процесса растворения
- •6.З. Способы выражения концентрации растворов
- •6.4. Коллигативные свойства растворов
- •6.4.1. Диффузия
- •6.4.2. Осмос. Осмотическое и онкотическое давление
- •6.4.3. Давление насыщенного пара над раствором
- •6.4.4. Температура кипения и замерзания раствора
- •Глава 7 растворы электролитов и ионные равновесия
- •7.1. Электролитическая диссоциация
- •7.2. Равновесие в растворах слабых электролитов
- •7.2.1. Влияние общего иона и противоиона на равновесие
- •7.2.2. Взаимосвязь константы диссоциации и степени диссоциации
- •7.3. Особенности растворов сильных электролитов. Ионная сила раствора
- •7.4. Электролитическая диссоциация и ионное произведение воды
- •7.5. Водородный и гидроксильный показатели (рН и рОн)
- •7.6. Физико-химические основы водно-электролитного баланса в организме
- •Г лава 8 теория кислот и оснований и протолитические равновесия
- •8.1. Протолитическая теория кислот и оснований
- •8.2. Кислотно-основные свойства а-аминокислот
- •8.3. Важнейшие кислотно-основные реакции
- •8.3.1. Гидролиз солей
- •8.3.2. Реакции нейтрализации
- •8.3.3. Общая, активная и потенциальная кислотность растворов
- •8.4. Протолитический баланс. Буферные растворы и их свойства
- •8.5. Буферные системы организма, их взаимодействие, явления ацидоза и алкалоза
- •9.1. Основные понятия и факторы, влияющие на протекание окислительно-восстановительных реакций
- •9.2. Направление протекания окислительно-восстановительных реакций
- •9.3. Особенности биохимических окислительно-восстановительных процессов в организмах
- •9.3.1. Степень окисления углерода в органических соединениях
- •9.3.2. Биохимические реакции внутри- и межмолекулярной окислительно-восстановительной дисмутации за счет атомов углерода
- •9.3.3. Окислительно-восстановительные превращения кофакторов и коферментов оксидоредуктаз
- •9.3.4. Электронотранспортные цепи
- •9.3.5. Дегидрогеназное окисление-восстановление
- •9.3.6. Окислительное фосфорилирование
- •9.3.7. Фотофосфорилирование
- •9.3.8. Оксигеназное окисление-восстановление
- •9.3.9. Свободнорадикальное окисление и антиоксидантная система организма
- •9.4. Использование окислителей и восстановителей в медико-санитарной практике
- •Глава 10 комплексные соединения и их свойства
- •10.1. Основные понятия и терминология
- •10.2. Химическая связь в комплексных соединениях и особенности их строения
- •10.3. Химические свойства комплексных соединений
- •10.4. Медико-биологическая роль комплексных соединений
- •10.5. Металлолигандный баланс и его нарушения
- •10.6. Комплексонометрия
- •Глава 11 гетерогенные процессы и равновесия в растворах
- •11.1. Основные понятия и теоретические основы
- •11.2. Гетерогенные равновесия в растворах, связанные с процессом кристаллизации
- •11.3. Гетерогенные равновесия в растворах, связанные с процессом расслоения
- •11.4. Гетерогенные равновесия в живых системах
- •Глава 12 химия элементов-органогенов
- •12.2. Строение, химические свойства и роль элементов-органогенов и их соединений в растительном и животном мире
- •12.2.1. Водород и его соединения
- •12.2.2. Углерод и его соединения
- •12.2.3. Азот и его соединения
- •12.2.4. Фосфор и его соединения
- •12.2.5. Кислород и его соединения
- •12.2.6. Сера и ее соединения
- •12.3. Строение и химические свойства галогенов и их соединений
- •Глава 13 химия ионов металлов жизни и их роль в растительном и животном мире
- •13.1. Химия ионов s-металлов в организме
- •13.1.1. Натрий и калий
- •13.1.2. Магний и кальций
- •13.2. Химия ионов d-металлов в организме
- •13.2.1. Марганец
- •13.2.2. Железо и кобальт
- •13.2.3. Медь
- •13.2.4. Цинк
- •13.2.5. Молибден
- •Глава 14 химия и анализ загрязнений окружающей среды
- •14.1. Химия загрязнений атмосферы
- •14.1.1. Токсический смог
- •14.1.2. Фотохимический смог
- •14.1.3. Кислотные дожди
- •14.1.4. Загрязнение атмосферы другими токсикантами
- •14.1.5. Разрушение озонового слоя
- •14.2. Методы анализа токсикантов и методы снижения их поступления в атмосферу
- •14.3. Загрязнение гидросферы. Понятие об общих показателях, характеризующих природные и сточные воды
- •Глава 15 основные понятия органической химии
- •15.1. Основы классификации и номенклатуры органических соединений
- •15.2. Пространственная структура биоорганических молекул и виды изомерии
- •15.3. Понятие о взаимном влиянии атомов в молекуле и электронные эффекты
- •15.4. Классификация органических реакций и их компонентов
- •Г лава 16 алифатические и ароматические углеводороды
- •16.1. Строение и реакционная способность алканов
- •16.2. Строение и реакционная способность ненасыщенных углеводородов: алкенов и диенов
- •16.3. Ароматические углеводороды (арены)
- •Глава 17 спирты, фенолы, простые эфиры, тиолы и сульфиды
- •17.2. Физико-химические свойства спиртов и фенолов
- •17.3. Химические свойства спиртов
- •17.4. Химические свойства фенолов
- •17.5. Простые эфиры
- •17.6. Тиолы и сульфиды
- •Г лава 18 альдегиды, кетоны и их производные
- •18.1. Строение, номенклатура и физико-химические свойства альдегидов и кетонов
- •18.2. Химические свойства альдегидов и кетонов
- •18.2.1. Кислотно-основные свойства
- •18.2.2. Электрофильно-нуклеофильные свойства
- •18.2.3. Окислительно-восстановительные свойства
- •18.2.4. Комплексообразующие свойства
- •18.3. Альдегиды и кетоны в окружающей среде
- •Г лава 19 карбоновые кислоты и их функциональные производные
- •19.2. Химические свойства предельных кислот и их производных
- •19.2.1. Кислотно-основные свойства
- •19.2.2. Карбоновые кислоты как ацилирующие реагенты
- •19.2.3. Производные карбоновых кислот, их свойства и взаимные превращения
- •19.2.4. Окислительно-восстановительные свойства карбоновых кислот и их производных
- •19.3. Особенности свойств замещенных карбоновых кислот и их производных
- •19.3.1. Дикарбоновые кислоты
- •19.3.2. Гидроксикарбоновые кислоты
- •19.3.3. Оксокарбоновые кислоты
- •19.3.4. Ненасыщенные карбоновые кислоты
- •19.4. Основные реакции метаболизма карбоновых кислот
- •19.4.1. Биосинтез жирных кислот
- •1 9.4.2. Биологическое окисление жирных кислот
- •19.4.3. Реакции цикла кребса
- •19.5. Кислоты ароматического ряда и их производные как лекарственные средства
- •Г лава 20 Липиды
- •20.1. Жиры и воски
- •20.2. Омыляемые сложные липиды
- •20.3. Неомыляемые липиды - низкомолекулярные биорегуляторы
- •Глава 21 аминокислоты, пептиды и белки
- •21.1. Строение, классификация и физико-химические свойства а-аминокислот
- •21.2. Химические свойства а-аминокислот
- •21.2.1. Кислотно-основные свойства и прототропная таутомерия
- •21.2.2. К0мплекс00бразующие свойства
- •21.2.3. Электрофильно-нуклеофильные свойства
- •21.2.4. Окислительно-восстановительные свойства
- •21.3. Структура и свойства пептидов
- •21.4. Структура и свойства белков
- •Глава 22 углеводы и полисахариды
- •22.1. Строение, изомерия и свойства моносахаридов
- •22.1.1. Химические свойства моносахаридов и их производных
- •22.1.2. Катаболизм глюкозы - гликолиз
- •22.3. Полисахариды, их структура и свойства
- •22.3.1. Гомополисахариды
- •22.3.2. Гетерополисахариды, протеогликаны, гликопротеины
- •Г лава 23 биологически важные азотсодержащие соединения
- •23.1. Электронные состояния атома азота в его соединениях и свойства этих соединений
- •23.2. Роль аммиака для живых организмов и пути его обезвреживания. Цикл мочевины и ее свойства
- •23.3. Азотсодержащие ароматические гетероциклические соединения
- •23.4. Нуклеозиды, нуклеотиды и нуклеиновые кислоты, их структура и свойства
- •Г лава 24 электрохимия. Электрическая проводимость растворов электролитов
- •24.1. Электрическая подвижность ионов в растворе
- •24.2. Удельная электрическая проводимость растворов электролитов
- •24.3. Молярная электрическая проводимость растворов электролитов
- •24.4. Закон независимого движения ионов в разбавленных растворах (закон кольрауша)
- •24.5. Кондуктометрические методы анализа
- •24.5.1. Кондуктометрическое титрование
- •24.6. Электрическая проводимость биологических объектов в норме и патологии
- •Г лава 25 межфазные электрические потенциалы, гальванические цепи, потенциометрия
- •25.1. Возникновение двойного электрического слоя и виды электрических потенциалов
- •25.2. Электродный потенциал. Стандартный водородный электрод. Гальванические цепи. Уравнение нернста
- •25.3. Восстановительный потенциал
- •25.4. Диффузионный потенциал
- •25.5. Мембранный потенциал
- •25.6. Потенциометрия
- •25.6.1. Хлорсеребряный электрод сравнения
- •25.6.2. Ионо- и молекулярноселективные электроды определения
- •25.6.3. Потенциометрическое титрование
- •Глава 26 физико-химические основы поверхностных явлений
- •26.1. Свободная поверхностная энергия
- •26.2. Сорбция и ее виды
- •26.3. Абсорбция
- •26.4. Адсорбция
- •26.4.1. Адсорбция на неподвижной поверхности раздела фаз
- •26.4.2. Молекулярная адсорбция из растворов на твердых адсорбентах
- •26.4.3. Адсорбция ионов из растворов
- •26.4.4. Ионообменная адсорбция
- •26.5. Адсорбция на подвижной поверхности раздела фаз
- •26.6. Поверхностно-активные вещества
- •26.7. Хроматография
- •Глава 27 физикохимия дисперсных систем
- •27.2. Лиофобные коллоидные растворы
- •27.2.1. Строение мицелл в лиофобных коллоидных растворах
- •27.2.2. Свойства лиофобных коллоидных растворов
- •27.2.3. Влияние высокомолекулярных соединений на устойчивость лиофобных коллоидов. Флокуляция
- •27.3. Лиофильные коллоидные растворы
- •27.3.1. Строение мицелл пав и вмс в водных коллоидных растворах в зависимости от их концентрации
- •27. 3. 2. Получение и свойства лиофильных коллоидных растворов
- •27.3.3. Моющее действие растворов пав
- •27.3.4. Особенности растворов биополимеров
- •27.4. Структурообразование в растворах вмс. Возникновение связнодисперсных систем и их свойства
- •27.5. Грубодисперсные системы
- •27.5.1. Суспензии
- •27.5.2. Эмульсии
- •27.5.3. Аэрозоли
- •27.6. Электрокинетические явления в дисперсных системах
- •27.7. Ткани организма - дисперсные системы
- •27.7.1. Строение и свойства межклеточных мембран
- •27.7.2. Кровь - сложная дисперсная система
- •Приложение 1 применение осмолярной и осмоляльной концентраций в практической медицине
23.3. Азотсодержащие ароматические гетероциклические соединения
Гетероциклическими называют органические соединения, в состав цикла которых помимо атомов углерода входят один или несколько атомов других элементов — гетероатомов. Наиболее важное значение имеют гетероциклы, содержащие атомы N, О и S. Включение этих гетероатомов вместо групп —СН=СН—, —СН= или —СН2- в циклическую систему не очень сильно изменяет общую геометрию молекулы и мало влияет на напряжение в цикле. Особый интерес вызывает обширная группа гетероциклов, имеющих циклические сопряженные системы кратных связей, в которых может принимать участие неподеленная электронная пара гетероатома, находящаяся на р-орбитали. Такого рода гетероциклы напоминают своей устойчивостью бензол и получили название ароматические гетероциклы. Именно эти соединения, содержащие в цикле один или несколько атомов азота, и будут объектом нашего рассмотрения.
Пятичленные гетероциклы. Пятичленные гетероциклические соединения можно рассматривать как продукт замещения в бензольном цикле одной группировки —СН=СН— на гетеро-атом с неподеденной парой электронов. Внимание будет уделено пирролу, индолу и имидазолу, поскольку эти азотсодержащие соединения или их производные составляют основу многих природных биологически активных веществ и лекарственных средств.
Пиррол. Молекула пиррола содержит систему сопряженных связей, включая неподеленную пару электронов атома азота:
Четыре
атома углерода молекулы пиррола находятся
в sp2-
-стоянии,
а атом азота — в sp2-I
состоянии,
соответственно все
-связи
между ними расположены в одной плоскости.
Неподеленная электронная пара атома
азота находится на p-орбитали
и участвует в сопряжении с π-электронами
соседних двойных связей. Энергия
делокализации электронов в π-системе
пиррола составляет 110
кДж/моль,
следовательно, он имеет ароматический
характер. Атом азота является донором
электронной пары для π-системы, поэтому
на углеродных атомах цикла плотность
π-электронов увеличена, причем в
а-положении больше, чем в B-положении.
Это делает пиррол электроноизбыточным
гетероциклом, благодаря чему он легче
вступает в реакции электрофильного
замещения по сравнению с бензолом и
легко окисляется.
Пиррол - бесцветная жидкость (т. кип. 131 °С) с запахом хлороформа, практически нерастворимая в воде и быстро темнеющая на воздухе из-за окисления. Молекула пиррола содержит полярную связь N—Н и является очень слабой NH-кислотой (рКа = 17,5). При взаимодействии со щелочными металлами пиррол образует соли, устойчивые в отсутствие воды:
Поскольку неподеленная электронная пара атома азота де-локализована, то пиррол является очень слабым основанием. В сильнокислой среде ароматическая система пиррола нарушается вследствие протонирования, и он легко полимеризуется с образованием темной смолы. Поэтому пиррол называют ацидофобным, т. е. не выдерживающим присутствия кислот.
Реакции электрофильного замещения в пирроле обычно проводят в щелочной среде. Даже такой слабый электрофил, как I2, в этих условиях замещает четыре водородных атома пиррола, образуя тетраиодпиррол:
)
Реакция сопровождается окислением углеродных атомов пиррола и восстановлением атомов иода.
Наиболее реакционноспособно к электрофильному замещению в пирроле а-положение. Так, конденсацией пиррола с муравьиной кислотой можно получить порфин:
Эта конденсация, естественно, тоже сопровождается окислением а-углеродных атомов пиррола и восстановлением углеродных атомов муравьиной кислоты.
Плоский макроцикл порфина является ароматической сопряженной системой, π-электронное облако которой содержит 26 электронов (22 электрона одиннадцати двойных связей и две неподеленные электронные пары двух атомов азота). Это соответствует правилу ароматичности 4n+2, где n = 6. Порфины, частично или полностью замещенные в пиррольных циклах, называются порфиринами. Это активные хелатообразующие четырехдентатные лиганды, входящие в состав важных природных комплексных соединений: гемоглобина, цитохромов, хлорофилла (разд. 10.4).
При биологическом окислении в печени гемоглобина и других порфиринсодержащих метаболитов образуются билирубиноиды, содержащие линейную тетрапиррольную систему. Наиболее важный из них - билирубин имеет оранжевую окраску.
Эти вещества являются пигментами желчи, часть которых выделяется с мочой, сообщая ей характерный желтый оттенок. Они же вызывают пожелтение кожи при желтухе, что свидетельствует о чрезмерном разрушении порфинсодержащих метаболитов в печени. При гидрировании пиррола происходит постепенное присоединение водорода по кратным связям:
П
ри
этом ароматическая система пиррола
разрушается и атом азота переходит в
sр3-состояние.
В результате основность полученных
соединений намного выше, чем основность
пиррола (pKa(BH+)
= -3,8). Так, для пирролидина р.Ка(ВН+)
=11,3. Пирролидиновое кольцо входит в
состав a-аминокислот
(пролин, гидроксипролин), а также
алкалоидов (никотин):
Индол (бензопиррол) является конденсированным гетероциклическим соединением, состоящим из бензольного и пиррольного ядра. Индол имеет циклическую сопряженную систему, содержащую 10 электронов. В индоле электронодонорное действие атома азота проявляется в повышении электронной плотности на углеродных атомах, особенно в положениях 3, 5 и 7. В отличие от пиррола, в индоле электрофильные реагенты прежде всего атакуют углеродный атом в положении 3, что обусловлено влиянием бензольного цикла. Индол, подобно пирролу, практически не обладает основными свойствами, ацидофобен, ведет себя как слабая NH-кислота (рКа = 17), легко окисляется, из-за чего быстро темнеет на воздухе.
Среди биологически активных производных индола прежде всего следует отметить a-аминокислоту - триптофан. В организме триптофан гидроксилируется в 5-гидрокситриптофан, который в результате декарбоксилирования превращается в серотонин. Серотонин играет исключительно важную роль в обмене веществ у высших млекопитающих, регулируя передачу импульсов в нервных тканях и кровяное давление.
Производными индола являются наиболее сильные галлюциногены: псилоцибин и диэтиламид лизергиновой кислоты (ЛСД). Последний - наиболее сильнодействующий наркотик, его действующая доза около 10-3 мг. Эти галлюциногены - антагонисты серотонина, поэтому их применение нарушает концентрацию се-ротонина в мозге, что приводит к отклонению от нормального психического состояния.
И
мидазол.
Замена в пирроле группы =СН— в Р-положении
на атом азота
с
неподеленной электронной парой на
sp2-орбитали
приводит к ароматическому гетероциклу
- имидазолу. Атом азота в положении 1
ана
логичен
атому азота в пирроле. Его полярная
связь N—Н обеспечивает имидазолу слабые
кислотные свойства (рКа
=
14,2).
Атом азота в положении 3 находится в sp2-II состоянии, поэтому его неподеленная электронная пара участвует в сопряжении и обеспечивает гетероциклу основные свойства (рКа(ВH+) = 6,95).
Таким образом, имидазол - амфолит из-за наличия в молекуле и кислотного, и основного центров, поэтому у него имеются прекрасные возможности для межмолекулярной ассоциации за счет водородных связей:
Следствием подобной ассоциации является быстрый межмолекулярный обмен протонами, который приводит в случае линейных ассоциатов к переносу протона по эстафетному механизму, а в случае димеров — к прототропной таутомерии. Прототропная таутомерия между димерами имидазола приводит к тому, что его производные, имеющие одинаковые заместители в разных положениях 4 и 5, неразличимы, поскольку они являются быстровзаимопревращающимися (менее 0,1 с) таутомерами, т. е. фактически одним и тем же веществом.
Имидазол и его производные, являясь, подобно молекуле воды, одновременно и донорами и акцепторами протонов, обладают исключительной способностью катализировать электрофильно-нуклеофильные реакции. Это обусловлено их способностью одновременно и согласованно воздействовать на электрофильные и нуклеофильные центры взаимодействующих соединений. Такое свойство имидазола играет важную роль в механизме действия гидролитических ферментов, способствующих гидролизу сложных эфиров, амидов и пептидов.
Высокая поляризуемость имидазола и его производных и повышенная нуклеофильность атома N-3 делают эти соединения активными лигандами по отношению к катионам d-металлов. Поэтому во многих металлопротеидах связь белка с катионом металла осуществляется через атом N-3 имидазольного заместителя а-аминокислоты гистидина.
Гистидин является одной из природных незаменимых а-ами-нокислот, содержащей имидазольный заместитель. Белки, содержащие гистидин, благодаря имидазольному заместителю способны: поддерживать нейтральную среду рН = 7 биологических систем, выступать катализаторами электрофильно-нуклеофильных реакций и образовывать достаточно прочные комплексы-металло-протеиды. При декарбоксилировании гистидина образуется гистамин, играющий важную роль в стимуляции сокращения
мускулатуры кишечника, спастических сокращений бронхов, а также в развитии аллергических и иммунных реакций:
Шестичленные гетероциклы. Среди шестичленных азотсодержащих гетероциклов рассмотрим пиридин, пиримидин и их производные.
Пиридин - бесцветная жидкость, хорошо смешивается с водой и органическими растворителями, имеет неприятный характерный запах. Пиридин токсичен, поражает центральную нервную систему.
П
иридин
является ароматическим соединением.
Атомы углерода пиридинового кольца
находятся в sp2-гибридном
состоянии, а атом азота - в состоянии
sp2-II.
В образовании циклической
-сопряженной
системы участвуют шесть p-электронов
(по одному от каждого атома цикла, включая
гетероатом). Поскольку электроотрицательность
атома азота по сравнению с углеродом
больше, то азот стягивает к себе
-электронное облако, понижая электронную
плотность ароматического кольца. Из-за
этого пиридин является электронодефицитным
соединением и
труднее, чем бензол, вступает в реакции
электрофильного замещения. В пиридине
электронная плотность неравномерно
распределена по атомам углерода, что
подтверждается расчетными и
экспериментальными (спектральными)
данными. Степени окисления его а-углеродных
атомов выше, чем у других углеродных
атомов кольца.
В отличие от пиррола, у пиридина неподеленная пара электронов атома азота не участвует в образовании ароматического секстета. Благодаря наличию свободной электронной пары у атома азота пиридин и его производные являются основаниями. С кислотами они образуют соли пиридиния. Основность пиридина (pKa(BH+) = 5,23) несколько больше, чем у анилина (pKa(BH+) = = 4,60), но значительно меньше основности алифатических аминов (pKa(BH+) = 10).
Распределение электронной плотности в пиридине определяет ориентацию электрофильного замещения в (3-положение, а нук леофильного - в а- и у-положения. Электрофильное замещение у производных пиридина протекает с большим трудом, так как оно обычно проводится в кислой среде, где пиридин существует в виде катиона. Положительный заряд на атоме азота еще больше понижает электронную плотность в ядре и затрудняет атаку ядра электрофильной частицей:
В реакции нуклеофильного замещения по a-углеродному атому пиридин вступает легче:
Р
ассмотренные
реакции замещения являются одновременно
реакциями межмолекулярного
окисления-восстановления.
Каталитическое гидрирование пиридина водородом протекает постепенно и трудно, а приводит в итоге к пиперидину:
Реакция сопровождается восстановлением атомов углерода кольца, а также переходом всех его атомов, включая атом азота, в электронное состояние sp3. Поэтому основность азота возрастает: рKа(ВН+) =11,0.
Атом азота в пиридине является нуклеофилом и способен алкилироваться с образованием четвертичных алкилпиридиниевых солей:
При этом электронодефицитность пиридиниевого ядра повышается из-за появления положительного заряда на атоме азота.
Производные пиридина. Многие природные соединения: витамины, коферменты, алкалоиды и большое число лекарственных препаратов - являются производными пиридина.
Никотин - бесцветное масло с табачным запахом, его содержание в листьях табака доходит до 8 %. Соединение очень ядовито, летальная доза для человека - 40 мг. Воздействует на вегетативную нервную систему и сужает кровеносные сосуды. Не исключено, что это является следствием изменения состояния воды внутри клеток соответствующих тканей из-за проникновения в них никотина - гидрофобного соединения (разд. 11.3 и 11.4).
Одним из продуктов окисления никотина в жестких условиях является никотиновая кислота (Р-пиридинкарбоновая кислота), которая имеет амфотерные свойства: рКа(СООН) = 2,07, рKа(ВН+) = 4,73. Подобно а-аминокислотам она в кристаллическом состоянии и отчасти в растворах существует в виде таутомера с биполярно-ионной структурой. Никотиновая кислота - провитамин, поскольку ее амид - никотинамид - является витамином PP. Недостаток этого витамина вызывает заболевание кожи, называемое пеллагрой. Диэтиламид никотиновой кислоты - кордиамин используется как эффективный стимулятор центральной нервной системы.
Никотинамиднуклеотиды. Важными представителями этой группы соединений являются коферменты никотин-амидадениндинуклеотид (НАД+) и его фосфат (НАДФ+):
В молекулах этих коферментов из-за наличия положительно заряженного атома азота и электроноакцепторной амидной группировки электронодефицитность пиридинового ядра возрастает настолько, что они способны проявлять окислительные свойства. Поэтому эти коферменты в комплексе с ферментами участвуют в окислительно-восстановительных реакциях (разд. 9.3.3) в виде окисленных форм НАД+ и НАДФ+, содержащих никотинамидный остаток в виде пиридиниевого катиона, и восстановленных форм НАД(Н) и НАДФ(Н), где указанный фрагмент, приняв два электрона и протон, превратился в 1,4-дигидропиридиновую группировку:
Все окислительно-восстановительные превращения биосубстратов под действием никотинамиднуклеотидов являются реакциями межмолекулярной дисмутации за счет углеродных атомов участников реакции. При переходе окисленной формы коферментов в восстановленную происходит накопление энергии, выделяемой при окислении субстрата. Накопленная восстановленной формой энергия затем расходуется в других эндэргонических процессах с участием этих коферментов (разд. 9.3.3).
Пиридоксальфосфат и витамин В6. В пиридоксаль-фосфате за счет электронодефицитности пиридинового кольца у углеродного атома альдегидной группы повышается склонность к окислительно-восстановительным превращениям. Поэтому это соединение является коферментом окислительно-восстановительных реакций трансаминирования a-кетокислот а-аминокислотами и в реакциях декарбоксилирования ряда аминокислот (разд. 21.2.5).
Сочетание трех индивидуальных веществ: пиридоксола, пиридоксамина и пиридоксаля - рассматривают как витамин B6 (пиридоксин), так как в организме они все способны перейти в пиридоксальфосфат, участвующий в химических реакциях, связанных с деятельностью данного витамина. Отсутствие в пище витамина B6 сопровождается резким нарушением обмена белков и липидов, что ведет к развитию атеросклероза, различных дерматитов и нарушению кроветворения.
Пиримидин и его производные. Пиримидин содержит два атома азота в положениях 1 и 3 шестичленного цикла, имеющего ароматическую шестиэлектронную -систему. В связи с тем, что оба атома азота находятся в sp2-II состоянии и их неподеленные электронные пары не участвуют в образовании ароматической системы, пиримидин проявляет свойства слабого основания (pКа(ВH+) = 1,3):
Основность пиримидина резко понижена по сравнению с пиридином (рКа(ВН+) = 5,2) из-за электроноакцепторных свойств второго атома азота, находящегося в ядре. Протонизация одного атома азота настолько понижает основность другого атома азота, что дальнейшее солеобразование в естественных условиях не происходит.
Большое значение в химии нуклеиновых кислот имеют следующие оксо- и аминопроизводные пиримидина: урацил, тимин и цитозин.
Д
ля
этих соединений теоретически возможна
прототропная
лактим-лактамная таутомерия. Соответствующие
таутомеры различаются не только
положением протона (у атома кислорода
или у атома азота), но и электронным
состоянием атома азота (sp2-II
или sp2-I):
У таутомеров имеется общий амбидентный анион, отрицательный заряд которого делокализован между атомами, участвующими в таутомерии. Последнее обстоятельство объясняет двойственную реакционную способность рассмотренных соединений, т. е.
образовывать и О- и N-производные. Исследования кислотно-основных свойств и спектральных характеристик указанных оксопиримидинов и родственных им соединений свидетельствуют, что и в кристаллах, и в растворах для них характерна только лактамная форма, а их ионы амбидентны.
Урацил и тимин в естественных условиях являются слабыми двухосновными кислотами, причем их моноанионы существуют в виде двух таутомеров, различающихся положением оставшегося протона у атомов азота N-1 или N-3 и распределением делокализованного отрицательного заряда:
Таким образом, в биологических средах с рН<7,5 урацил и тимин существуют в молекулярной форме.
Цитозин - амфолит: он протонируется по атому N-1, имеющему свободную от участия в сопряжении электронную пару, а за счет депротонирования атома N-3 проявляет слабые кислотные свойства:
В биологических средах с рН = 3 - 6 цитозин существует в виде смеси катионов и молекул, а при рН = 7 - в молекулярной форме.
С
реди
природных оксипиримидинов важную роль
играют оротовая
и
барбитуровая
кислоты. Оротовая
кислота (урацил-6-карбоновая кислота)
является метаболитом, участвующим в
превращении аспарагиновой кислоты в
пиримидиновые производные. В условиях
организма это довольно сильная
двухосновная кислота:
Оротат калия - стимулятор обменных процессов в организме.
Для барбитуровой кислоты характерна кето-енольная таутомерия с преобладанием кетотаутомера (= 98 %). Барбитуровая кислота - достаточно сильная СН-кислота. Лактимная форма для этой кислоты не обнаружена.
В медицине в качестве снотворных и противосудорожных средств применяют 5,5-дизамещенные барбитуровые кислоты: бар-битал и фенобарбитал, называемые барбитуратами. Они существуют только в лактамной форме и являются слабыми NH-кислотами:
П
урин
и его производные.
Пурин
-
ароматическое бициклическое
гетероциклическое соединение, содержащее
ядро пиримидина и имидазола. Его
ароматическая
-система
включает 8
-электронов
двойных связей и неподеленную электронную
пару одного из атомов азота имидазольного
фрагмента. Пурин, подобно имидазолу,
является прототропной таутомерной
системой за счет миграции протона между
атомами азота N-7
и N-9.
Пурин - амфолит, так как проявляет и
основные (рКа(ВН+)
= 2,4), и кислотные свойства (рКа
= 9,9):
Оксо- и аминопроизводные пурина — аденин и гуанин входят в состав нуклеиновых кислот. В молекуле аденина у трех атомов азота N-l, N-3 и N-7 неподеленные электронные пары не участвуют в сопряжении, находясь на sp2-орбиталях, у двух других атомов азота неподеленные электронные пары, находясь на р-орбиталях, активно участвуют в сопряжении. Для аденина, как и для пурина, наблюдается прототропная таутомерия за счет миграции протона между N-7 и N-9. Обычно аденин изображают с протоном у атома N-9, хотя в его водных растворах содержание таутомера N7H в 2,5 раза выше. Аденин является амфо-литом, способным, в зависимости от кислотности среды, или присоединять протон к пиримидиновому атому азота, образуя катион, или отщеплять протон от имидазольного атома азота с образованием аниона:
В биологических средах с рН = 7 аденин находится в основном в виде молекул, а в кислых средах (рН = 3 - 6) - в виде смеси молекул и катионов. Аденин входит в состав некоторых ко-ферментов, аденозинтрифосфорной кислоты (АТФ) и ее производных АДФ и АМФ.
Д
ля
гуанина характерна лактамная форма,
поэтому неподеленная электронная пара
атома N-1
находится на р-орбитали и активно
участвует в сопряжении. В соответствии
с -кислотно-основными свойствами гуанин,
в зависимости от рН-среды, в водных
растворах может находиться в форме
катиона, молекулы, моно- или дианиона:
В биологических средах с рН = 3 - 6 гуанин находится в виде смеси молекул и катионов, а при рН = 7 - 9 — молекул и моноанионов. Таким образом, из всех азотистых оснований нуклеиновых кислот наиболее сильные основные свойства проявляет аденин.
В условиях организма цитозин и гуанин — слабые основания, а урацил и тимин - слабые кислоты. Для всех этих гетероциклических соединений характерно образование водородных связей, при котором они выступают одновременно и как доноры, и как акцепторы протонов. Эта их способность реализуется при построении нуклеиновых кислот (разд. 23.4).
Среди оксопроизводных пурина следует выделить кофеин и мочевую кислоту. Кофеин содержится в кофейных зернах, бобах какао и чайных листьях. Это сильнодействующий возбудитель центральной нервной системы и стимулятор работы сердца. Кофеин является основанием и образует соли с кислотами.
Мочевая кислота - продукт обмена веществ в живых организ-мах. В значительных количествах встречается в экскрементах птиц (= 25 %) и особенно змей (= 90 %). Мочевая кислота является двухосновной NH-кислотой (рКа 1= 5,4, а рКа 2 = 11,3) и образует два ряда солей-уратов, большинство из которых, как и сама мочевая кислота, плохо растворяются в воде.
