- •Оглавление
- •Глава 1 16
- •Глава 2 химическая связь 33
- •Глава 3 54
- •Глава 4 82
- •Глава 5 110
- •Глава 6 141
- •Глава 7 173
- •Глава 8 196
- •Глава 9 234
- •Глава 10 комплексные соединения и их свойства 272
- •Глава 11 297
- •Глава 12 316
- •Глава 13 377
- •Глава 14 400
- •Глава 15 основные понятия органической химии 419
- •Глава 16 445
- •Глава 17 474
- •Глава 18 499
- •Глава 19 518
- •Глава 20 562
- •Глава 21 аминокислоты, пептиды и белки 578
- •Глава 22 620
- •Глава 23 651
- •Глава 24 692
- •Глава 25 709
- •Глава 26 740
- •Глава 27 771
- •От автора
- •Глава 1 строение атома, периодический закон и периодическая система элементов д. И. Менделеева
- •1.1. Строение атома
- •1.1.1. Квантовые числа
- •1.1.2. Принципы заполнения атомных орбиталей электронами
- •1.2. Периодический закон и периодическая система элементов д. И. Менделеева
- •1.3. Основные характеристики атомов элементов
- •1.3.1. Радиус атома
- •1.3.2. Энергия ионизации
- •1.3.3. Энергия сродства к электрону
- •1.3.4. Относительная электроотрицательность
- •Глава 2 химическая связь
- •2.1. Ковалентная связь
- •2.1.1. И молекулярные орбитали
- •2.1.2. Механизмы возникновения ковалентной связи
- •2.1.3. Особенности ковалентной связи
- •2.2. Ионная связь
- •2.3. Металлическая связь
- •Глава 3 межмолекулярные взаимодействия и агрегатное состояние вещества
- •3.1. Межмолекулярные взаимодействия
- •3.2. Агрегатное состояние вещества
- •3.2.1. Твердое состояние
- •3.2.2. Жидкое состояние
- •3.2.3. Жидкокристаллическое состояние
- •3.2.4. Паро- и газообразное состояния
- •Глава 4 основы химической термодинамики и биоэнергетики
- •4.1. Основные понятия термодинамики
- •4.2. Первый закон термодинамики
- •4.3. Понятие о самопроизвольных процессах.
- •4.4. Второй закон термодинамики. Энергия гиббса
- •4.5. Принцип энергетического сопряжения биохимических реакций
- •Г лава 5 основы кинетики биохимических реакций и химического равновесия
- •5.1. Основные понятия и терминология раздела
- •5.2. Факторы, влияющие на скорость гомогенных реакций
- •5.2.1. Влияние природы реагирующих веществ
- •5.2.2. Влияние концентрации реагентов.
- •5.2.3. Влияние температуры. Энергия активации
- •5.2.4. Влияние катализатора
- •5.3. Особенности кинетики гетерогенных реакций
- •5.4. Особенности кинетики цепных реакций
- •5.5. Химическое равновесие
- •5.5.1. Смещение химического равновесия
- •5.6. Ферментативный катализ и его особенности
- •5.7. Автоколебательные биохимические процессы
- •Г лава 6 растворы и их коллигативные свойства
- •6.1. Вода как растворитель и ее роль в жизнедеятельности организма
- •6.2. Термодинамика процесса растворения
- •6.З. Способы выражения концентрации растворов
- •6.4. Коллигативные свойства растворов
- •6.4.1. Диффузия
- •6.4.2. Осмос. Осмотическое и онкотическое давление
- •6.4.3. Давление насыщенного пара над раствором
- •6.4.4. Температура кипения и замерзания раствора
- •Глава 7 растворы электролитов и ионные равновесия
- •7.1. Электролитическая диссоциация
- •7.2. Равновесие в растворах слабых электролитов
- •7.2.1. Влияние общего иона и противоиона на равновесие
- •7.2.2. Взаимосвязь константы диссоциации и степени диссоциации
- •7.3. Особенности растворов сильных электролитов. Ионная сила раствора
- •7.4. Электролитическая диссоциация и ионное произведение воды
- •7.5. Водородный и гидроксильный показатели (рН и рОн)
- •7.6. Физико-химические основы водно-электролитного баланса в организме
- •Г лава 8 теория кислот и оснований и протолитические равновесия
- •8.1. Протолитическая теория кислот и оснований
- •8.2. Кислотно-основные свойства а-аминокислот
- •8.3. Важнейшие кислотно-основные реакции
- •8.3.1. Гидролиз солей
- •8.3.2. Реакции нейтрализации
- •8.3.3. Общая, активная и потенциальная кислотность растворов
- •8.4. Протолитический баланс. Буферные растворы и их свойства
- •8.5. Буферные системы организма, их взаимодействие, явления ацидоза и алкалоза
- •9.1. Основные понятия и факторы, влияющие на протекание окислительно-восстановительных реакций
- •9.2. Направление протекания окислительно-восстановительных реакций
- •9.3. Особенности биохимических окислительно-восстановительных процессов в организмах
- •9.3.1. Степень окисления углерода в органических соединениях
- •9.3.2. Биохимические реакции внутри- и межмолекулярной окислительно-восстановительной дисмутации за счет атомов углерода
- •9.3.3. Окислительно-восстановительные превращения кофакторов и коферментов оксидоредуктаз
- •9.3.4. Электронотранспортные цепи
- •9.3.5. Дегидрогеназное окисление-восстановление
- •9.3.6. Окислительное фосфорилирование
- •9.3.7. Фотофосфорилирование
- •9.3.8. Оксигеназное окисление-восстановление
- •9.3.9. Свободнорадикальное окисление и антиоксидантная система организма
- •9.4. Использование окислителей и восстановителей в медико-санитарной практике
- •Глава 10 комплексные соединения и их свойства
- •10.1. Основные понятия и терминология
- •10.2. Химическая связь в комплексных соединениях и особенности их строения
- •10.3. Химические свойства комплексных соединений
- •10.4. Медико-биологическая роль комплексных соединений
- •10.5. Металлолигандный баланс и его нарушения
- •10.6. Комплексонометрия
- •Глава 11 гетерогенные процессы и равновесия в растворах
- •11.1. Основные понятия и теоретические основы
- •11.2. Гетерогенные равновесия в растворах, связанные с процессом кристаллизации
- •11.3. Гетерогенные равновесия в растворах, связанные с процессом расслоения
- •11.4. Гетерогенные равновесия в живых системах
- •Глава 12 химия элементов-органогенов
- •12.2. Строение, химические свойства и роль элементов-органогенов и их соединений в растительном и животном мире
- •12.2.1. Водород и его соединения
- •12.2.2. Углерод и его соединения
- •12.2.3. Азот и его соединения
- •12.2.4. Фосфор и его соединения
- •12.2.5. Кислород и его соединения
- •12.2.6. Сера и ее соединения
- •12.3. Строение и химические свойства галогенов и их соединений
- •Глава 13 химия ионов металлов жизни и их роль в растительном и животном мире
- •13.1. Химия ионов s-металлов в организме
- •13.1.1. Натрий и калий
- •13.1.2. Магний и кальций
- •13.2. Химия ионов d-металлов в организме
- •13.2.1. Марганец
- •13.2.2. Железо и кобальт
- •13.2.3. Медь
- •13.2.4. Цинк
- •13.2.5. Молибден
- •Глава 14 химия и анализ загрязнений окружающей среды
- •14.1. Химия загрязнений атмосферы
- •14.1.1. Токсический смог
- •14.1.2. Фотохимический смог
- •14.1.3. Кислотные дожди
- •14.1.4. Загрязнение атмосферы другими токсикантами
- •14.1.5. Разрушение озонового слоя
- •14.2. Методы анализа токсикантов и методы снижения их поступления в атмосферу
- •14.3. Загрязнение гидросферы. Понятие об общих показателях, характеризующих природные и сточные воды
- •Глава 15 основные понятия органической химии
- •15.1. Основы классификации и номенклатуры органических соединений
- •15.2. Пространственная структура биоорганических молекул и виды изомерии
- •15.3. Понятие о взаимном влиянии атомов в молекуле и электронные эффекты
- •15.4. Классификация органических реакций и их компонентов
- •Г лава 16 алифатические и ароматические углеводороды
- •16.1. Строение и реакционная способность алканов
- •16.2. Строение и реакционная способность ненасыщенных углеводородов: алкенов и диенов
- •16.3. Ароматические углеводороды (арены)
- •Глава 17 спирты, фенолы, простые эфиры, тиолы и сульфиды
- •17.2. Физико-химические свойства спиртов и фенолов
- •17.3. Химические свойства спиртов
- •17.4. Химические свойства фенолов
- •17.5. Простые эфиры
- •17.6. Тиолы и сульфиды
- •Г лава 18 альдегиды, кетоны и их производные
- •18.1. Строение, номенклатура и физико-химические свойства альдегидов и кетонов
- •18.2. Химические свойства альдегидов и кетонов
- •18.2.1. Кислотно-основные свойства
- •18.2.2. Электрофильно-нуклеофильные свойства
- •18.2.3. Окислительно-восстановительные свойства
- •18.2.4. Комплексообразующие свойства
- •18.3. Альдегиды и кетоны в окружающей среде
- •Г лава 19 карбоновые кислоты и их функциональные производные
- •19.2. Химические свойства предельных кислот и их производных
- •19.2.1. Кислотно-основные свойства
- •19.2.2. Карбоновые кислоты как ацилирующие реагенты
- •19.2.3. Производные карбоновых кислот, их свойства и взаимные превращения
- •19.2.4. Окислительно-восстановительные свойства карбоновых кислот и их производных
- •19.3. Особенности свойств замещенных карбоновых кислот и их производных
- •19.3.1. Дикарбоновые кислоты
- •19.3.2. Гидроксикарбоновые кислоты
- •19.3.3. Оксокарбоновые кислоты
- •19.3.4. Ненасыщенные карбоновые кислоты
- •19.4. Основные реакции метаболизма карбоновых кислот
- •19.4.1. Биосинтез жирных кислот
- •1 9.4.2. Биологическое окисление жирных кислот
- •19.4.3. Реакции цикла кребса
- •19.5. Кислоты ароматического ряда и их производные как лекарственные средства
- •Г лава 20 Липиды
- •20.1. Жиры и воски
- •20.2. Омыляемые сложные липиды
- •20.3. Неомыляемые липиды - низкомолекулярные биорегуляторы
- •Глава 21 аминокислоты, пептиды и белки
- •21.1. Строение, классификация и физико-химические свойства а-аминокислот
- •21.2. Химические свойства а-аминокислот
- •21.2.1. Кислотно-основные свойства и прототропная таутомерия
- •21.2.2. К0мплекс00бразующие свойства
- •21.2.3. Электрофильно-нуклеофильные свойства
- •21.2.4. Окислительно-восстановительные свойства
- •21.3. Структура и свойства пептидов
- •21.4. Структура и свойства белков
- •Глава 22 углеводы и полисахариды
- •22.1. Строение, изомерия и свойства моносахаридов
- •22.1.1. Химические свойства моносахаридов и их производных
- •22.1.2. Катаболизм глюкозы - гликолиз
- •22.3. Полисахариды, их структура и свойства
- •22.3.1. Гомополисахариды
- •22.3.2. Гетерополисахариды, протеогликаны, гликопротеины
- •Г лава 23 биологически важные азотсодержащие соединения
- •23.1. Электронные состояния атома азота в его соединениях и свойства этих соединений
- •23.2. Роль аммиака для живых организмов и пути его обезвреживания. Цикл мочевины и ее свойства
- •23.3. Азотсодержащие ароматические гетероциклические соединения
- •23.4. Нуклеозиды, нуклеотиды и нуклеиновые кислоты, их структура и свойства
- •Г лава 24 электрохимия. Электрическая проводимость растворов электролитов
- •24.1. Электрическая подвижность ионов в растворе
- •24.2. Удельная электрическая проводимость растворов электролитов
- •24.3. Молярная электрическая проводимость растворов электролитов
- •24.4. Закон независимого движения ионов в разбавленных растворах (закон кольрауша)
- •24.5. Кондуктометрические методы анализа
- •24.5.1. Кондуктометрическое титрование
- •24.6. Электрическая проводимость биологических объектов в норме и патологии
- •Г лава 25 межфазные электрические потенциалы, гальванические цепи, потенциометрия
- •25.1. Возникновение двойного электрического слоя и виды электрических потенциалов
- •25.2. Электродный потенциал. Стандартный водородный электрод. Гальванические цепи. Уравнение нернста
- •25.3. Восстановительный потенциал
- •25.4. Диффузионный потенциал
- •25.5. Мембранный потенциал
- •25.6. Потенциометрия
- •25.6.1. Хлорсеребряный электрод сравнения
- •25.6.2. Ионо- и молекулярноселективные электроды определения
- •25.6.3. Потенциометрическое титрование
- •Глава 26 физико-химические основы поверхностных явлений
- •26.1. Свободная поверхностная энергия
- •26.2. Сорбция и ее виды
- •26.3. Абсорбция
- •26.4. Адсорбция
- •26.4.1. Адсорбция на неподвижной поверхности раздела фаз
- •26.4.2. Молекулярная адсорбция из растворов на твердых адсорбентах
- •26.4.3. Адсорбция ионов из растворов
- •26.4.4. Ионообменная адсорбция
- •26.5. Адсорбция на подвижной поверхности раздела фаз
- •26.6. Поверхностно-активные вещества
- •26.7. Хроматография
- •Глава 27 физикохимия дисперсных систем
- •27.2. Лиофобные коллоидные растворы
- •27.2.1. Строение мицелл в лиофобных коллоидных растворах
- •27.2.2. Свойства лиофобных коллоидных растворов
- •27.2.3. Влияние высокомолекулярных соединений на устойчивость лиофобных коллоидов. Флокуляция
- •27.3. Лиофильные коллоидные растворы
- •27.3.1. Строение мицелл пав и вмс в водных коллоидных растворах в зависимости от их концентрации
- •27. 3. 2. Получение и свойства лиофильных коллоидных растворов
- •27.3.3. Моющее действие растворов пав
- •27.3.4. Особенности растворов биополимеров
- •27.4. Структурообразование в растворах вмс. Возникновение связнодисперсных систем и их свойства
- •27.5. Грубодисперсные системы
- •27.5.1. Суспензии
- •27.5.2. Эмульсии
- •27.5.3. Аэрозоли
- •27.6. Электрокинетические явления в дисперсных системах
- •27.7. Ткани организма - дисперсные системы
- •27.7.1. Строение и свойства межклеточных мембран
- •27.7.2. Кровь - сложная дисперсная система
- •Приложение 1 применение осмолярной и осмоляльной концентраций в практической медицине
23.2. Роль аммиака для живых организмов и пути его обезвреживания. Цикл мочевины и ее свойства
Химические свойства аммиака и алифатических аминов уже были рассмотрены в разд. 12.2.4. В молекулах этих соединений неподеленная электронная пара атома азота находится на sp3-орбитали, поэтому для нее характерна предельная подвижность, а для аммиака и аминов - высокая основность, нуклеофильность и склонность к комплексообразованию как лигандов. Именно эти особенности химических свойств характерны и для природных аминокислот, так как они содержат «аминный» атом азота (гл. 21). Синтез аминокислот в природе осуществляется в растениях и микроорганизмах, которые ассимилируют простейшие азотсодержащие соединения (аммиак и нитраты) и восстанавливают их до аммиака, используя его для синтеза жизненно важных аминокислот, белков, гетероциклических азотсодержащих соединений и нуклеиновых кислот. Эти ценные природные вещества в готовом виде как продукты питания достаются животным. Большинство организмов экономно используют аминокислоты и нуклеотиды, пропуская их через процессы метаболического обновления, что позволяет использовать их повторно.
Вследствие особенностей метаболизма у животных, в частности дезаминирования аминокислот, в их организмах появляется аммиак. В норме концентрация аммиака поддерживается в крови у человека на уровне 0,4 - 0,7 мг/л. При рН крови аммиак существует почти полностью в виде катиона аммония. Ионы NH4(+), будучи заряженными частицами, с большим трудом проникают через клеточные мембраны. Диссоциация катиона аммония (как сопряженной кислоты с отщеплением протона и образованием аммиака) протекает слабо — pKa(NH4(+))= 9,25. Следовательно, аммиак является сильным акцептором протона. По этой причине, а также из-за склонности к комплексообразованию аммиак хорошо растворяется в воде, образуя малоустойчивое соединение NH3 • H2О - межмолекулярный ассоциат (разд. 12.2.4).
В отличие от катионов аммония, молекулы аммиака в виде ассоциата с молекулой воды легко проходят сквозь мембраны и способны проникать в клетки мозга, а также в их митохондрии. В результате замедляются реакции дезаминирования глутаминовой кислоты с образованием 2-оксоглутарата (разд. 21.2.5). Следовательно, снижается интенсивность реакций: цикла Кребса (разд. 19.4.3), завершения окисления глюкозы (разд. 22.1.2) и синтеза АТФ (разд. 9.3.4), обеспечивающих мозг энергией. Кроме того, аммиак, попадая в нервные ткани, вступает в реакции комплексообразования с катионами биометаллов, нарушая металло-лигандный гомеостаз в этих тканях (разд. 10.5). Все это свидетельствует о токсичности излишка аммиака для животных, поэтому для них проблема удаления из организма токсичного аммиака чрезвычайно важна.
У костных рыб аминный азот транспортируется в виде глутамина в жабры, где содержится глутаминаза, катализирующая гидролиз глутамина до глутаминовой кислоты и аммиака. Образовавшийся аммиак сильно разбавляется потоком воды, омывающим жабры, и уносится им. Таким образом, у рыб функционирует простейшая система избавления организма от излишка аммиака.
В процессе эволюции у млекопитающих сформировалась специальная выделительная система из почек и мочевого пузыря. При этом в мочу поступает не аммиак и не катион аммония, а мочевина CO(NH2)2 (в моче человека содержание мочевины около 2 %). Поэтому основной метаболический путь обезвреживания аммиака у млекопитающих заключается в том, что в клетках печени на его основе синтезируется мочевина. Этот синтез совершается в форме цикла и называется циклом мочевины* (открыт Г. Кребсом и К. Хенселантом в 1932 г.).
Цикл мочевины. Начинается этот процесс с получения карбамоилфосфата в матриксе митохондрий, где много АТФ.
I
.
Образование карбамоилфосфата. Ионы
аммония, возникшие в результате
окислительного дезаминирования
глутаминовой кислоты, взаимодействуют
с гидрокарбонат-анионом и АТФ при участии
карбамоилфосфатсинтетазы,
образуя
карбамоилфосфат,
содержащий
макроэргическую связь:
II. Получение цитруллина. В матриксе митохондрий карбамоилфосфат конденсируется с аминокислотой орнитином, которая, являясь гомологом лизина, не входит в состав белков. Реакция катализируется орнитинкарбамоилтрансферазой:
Образовавшийся цитруллин переходит из митохондрий в цитозоль клеток печени, где протекают остальные реакции цикла мочевины.
III. Получение аргининосукцината. Нуклеофильное замещение карбонильной группы цитруллина на аминогруппу аспартата с образованием гуанидиновой группировки аргининосукцината происходит при участии АТФ и катализируется аргининосукцинатсинтетазой:
Реакция эндэргоничная, и равновесие смещается вправо за счет последующего гидролиза Н2Р2O7(2-). Таким образом, на протекание первой и третьей реакций цикла мочевины всего расходуется 4 молекулы АТФ.
I
V.
Распад аргининосукцината. Под действием
аргининосукцинатлиазы
аргининосукцинат
экзэргонически расщепляется с
образованием аргинина и фумарата:
В цикле мочевины это единственная реакция внутримолекулярной дисмутации. Все остальные реакции этого цикла - элек-трофильно-нуклеофильные.
V.
Образование мочевины и регенерация
ор-нитина. Гидролиз аргинина, катализируемый
аргиназой,
приводит
к образованию мочевины и регенерации
орнитина. Реакция экзэргонична.
Регенерированный орнитин может снова поступать в митохондрии и участвовать в новом обороте цикла мочевины. Образовавшуюся мочевину кровь переносит из печени в почки, где мочевина извлекается из крови и удаляется из организма с мочой.
Из приведенных реакций видно, что токсичный аммиак превращается в безвредную мочевину. При этом один из атомов азота мочевины образуется из аммиака, другой - из аспартата. Кроме аммиака за счет цикла мочевины организм избавляется еще и от СО2 в виде НСО3. На это очищение от конечных продуктов метаболизма организм расходует 4 молекулы АТФ. Прежде чем рассмотреть особенности обезвреживания аммиака в организме птиц и пресмыкающихся, кратко остановимся на свойствах мочевины.
Свойства мочевины. Мочевина является диамидом угольной кислоты, и поэтому ее часто называют карбамидом. В отличие от аммиака, в мочевине у атомов азота их неподеленные электронные пары находятся на 2р-орбитали и участвуют в сопряжении с π-электронами связи С=0. Поэтому основность, нуклеофильность и склонность к комплексообразованию у мочевины понижены. Мочевина является очень слабым основанием; она протонируется по атому кислорода:
Мочевина легко растворяется в воде, ее растворы имеют нейтральную реакцию. Растворение мочевины в воде происходит с поглощением теплоты.
Мочевина гидролизуется медленно даже при кипячении с водой; процесс ускоряется в присутствии кислот или щелочей:
В присутствии фермента уреазы мочевина гидролизуется очень быстро, что очень важно для обмена веществ у животных и круговорота азота в биосфере.
По химическим свойствам мочевина похожа на амиды карбоновых кислот (разд. 19.2.3) с тем отличием, что у мочевины более выражены нуклеофильные и комплексообразующие свойства, так как в ее молекуле карбонильная группа связана с двумя аминогруппами. Мочевина как нуклеофил сравнительно легко ацилируется, образуя азотсодержащие гетероциклические соединения. Ацилирование мочевины малоновой кислотой приводит к барбитуровой кислоте, являющейся пиримидиновым производным:
При ацилировании мочевины 5-оксибарбитуровой кислотой образуется мочевая кислота — производное пурина:
Мочевая кислота и ее соли (ураты) плохо растворимы в воде. Поэтому при нарушениях обмена веществ возможно отложение мочевой кислоты в суставах, что приводит к заболеванию подагрой. Камни мочевого пузыря и почек состоят из мочевой кислоты и ее солей уратов (разд. 11.4).
При нагревании мочевины до 140 °С одна молекула мочевины, отщепляя аммиак, ацилирует другую молекулу мочевины, образуя биурет:
Биурет в щелочной среде с катионами меди(2) дает фиолетовое окрашивание, обусловленное образованием хелатного комплекса (биуретовая реакция):
М
очевина
широко применяется в качестве
пролонгированного азотного удобрения
и добавки к кормам жвачных животных, у
которых в первом отделе желудка (рубец)
имеются микроорганизмы, использующие
ее для синтеза аминокислот, необходимых
организму хозяина. В медицине мочевину
применяют в основном в качестве
дегидратирующего средства для
предупреждения и уменьшения отека мозга
и токсического отека легких, а также
как средство, понижающее внутриглазное
давление. В основе этого эффекта, кроме
явления осмоса, вероятно, лежит
способность мочевины влиять на
пространственную структуру воды в
растворе. Дезинфицирующие свойства
мочи и использование ее в уринотерапии,
возможно, также связаны с особой
пространственной структурой воды в
ней. Эта структура воды формируется в
почечной системе, но при хранении in
vitro
в результате теплового движения она
разрушается, и целебность мочи уменьшается.
Возвратимся к проблеме обезвреживания аммиака у живых существ. В отличие от млекопитающих, организм птиц и пресмыкающихся очищается от аммиака, превращая его сложным путем в мочевую кислоту. Из-за низкой растворимости в воде помет птиц, называемый гуано, представляет собой полутвердую массу, состоящую из кристаллов мочевой кислоты и небольшого количества воды. Богатейшие залежи гуано, используемого как удобрение, сосредоточены в местах гигантских птичьих базаров. В современных условиях источником гуано являются крупные птицефабрики.
