Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лаборатория.ря.DOC
Скачиваний:
1
Добавлен:
01.07.2025
Размер:
617.98 Кб
Скачать

Лабораторная работа №7. Косой изгиб

Под косым изгибом понимается такой случай изгиба, при котором плоскость изгибающего момента не совпадает ни с одной из главных осей поперечного сечения (рис. 6.1, а). Косой изгиб удобнее всего рассмотреть как одновременный изгиб бруса относи­тельно главных осей x и y поперечного сечения бруса. Для этого общий вектор изгибающего момента М, действующего в попереч­ном сечении бруса, раскладывается на составляющие момента от­носительно этих осей (рис. 6.1, б):

Mx = Msin;     My = Mcos . (6.25)

Введем следующее правило знаков для моментов Mx и My момент считается положительным, если в первой четверти коорди­натной плоскости (там, где координаты x и y обе положительны) он вызывает сжимающие напряжения.

Рис. 6.1

На основании принципа независимости действия сил нормаль­ное напряжение в произвольной точке, принадлежащей к попереч­ному сечению бруса и имеющей координаты xy, определяется суммой напряжений, обусловленных моментами Mx и My , т.е.

. (6.26)

Подставляя выражения Mx и My  из (6.25) в (6.26), получим:

.

Из курса аналитической геометрии известно, что последнее вы­ражение представляет собой уравнение плоскости. Следовательно, если в каждой точке сечения отложить по нормали вектор напря­жения , то концы векторов образуют геометрическое место точек, принадлежащих одной плоскости, как и при поперечном изгибе.

Уравнение нейтральной линии, т.е. геометрического места точек, где нормальное напряжение принимает нулевые значения, найдем, полагая в (6.26)  = 0:

.

Откуда определяется:

. (6.27)

Поскольку свободный член в (6.27) равен нулю нейтральная линия всегда проходит через начало координат. Как видно из выражения (6.26), эпюра напряжений в поперечных сечениях бруса линейна, следовательно, максимальные напряжения в сечении воз­никают в точках наиболее удаленных от нейтральной линии. В том случае, когда сечение имеет простую форму (прямоугольник, круг), положение наиболее опасных точек легко определяется визуально. Для сечений, имеющих сложную форму, необходимо применить графический подход.

Далее покажем, что при косом изгибе нейтральная линия не перпендикулярна к плоскости действия изгибающего момента, как это всегда выполнялось при поперечном изгибе. Действительно угловой коэффициент K1 следа момента (рис. 6.27, б) равен:

K1 = tg  . (6.28)

Угловой же коэффициент нейтральной линии, как это следует из (5.27), определяется выражением:

tg   = K2  . (6.29)

Так как в общем случае Ix  Iy, то условие перпендикулярности прямых, известное из аналитической геометрии, не соблюдается, поскольку K1   . Брус, образно выражаясь, предпочитает изги­баться не в плоскости изгибающего момента, а в некоторой другой плоскости, где жесткость на изгиб будет минимальной.

Лабораторная работа №8. Устойчивость прямых стержней

До сих пор мы рассматривали методы определения напряжений и перемещений, возникающих в стержнях и соответственно, зани­мались оценкой их прочности и жесткости. Однако оказывается, что соблюдение условий прочности и жесткости еще не гаранти­рует способности конструкций выполнять, предназначенные им функции в эксплуатационных режимах. Наряду с выполнением ус­ловий прочности и жесткости, необходимо обеспечить и устой­чивость конструкций.

При неизменной схеме нагружения, под устойчивостью пони­мается свойство способности системы сохранять свое первоначаль­ное равновесное состояние. Если рассматриваемая система таким свойством не обладает, то она называется неустойчивой, а ее равновесное состояние  неустойчивым состоянием.

При неизменной схеме нагружения, в процессе роста интен­сивности нагрузок, явление перехода системы от одного равновес­ного состояния к другому равновесному состоянию, называется потерей устойчивости системы. Значения внешних сил, при которых происходит потеря устойчивости, называются кри­тическими.

В некоторых случаях при потере устойчивости, система, пере­ходя в новое устойчивое равновесное состояние, продолжает вы­полнять свои функции. Однако в подавляющем большинстве случа­ев, потеря устойчивости системы сопровождается возникновением больших перемещений, пластических деформаций или ее полным разрушением. Поэтому сохранение исходного (расчетного) равно­весного состояния системы является важной задачей и одной из основных проблем сопротивления материалов.

Рис. 7.1

Основная задача теории устойчивости заключа­ется в определении критического значения внешних сил и ограничение их величин таким образом, чтобы исключить возможность потери устойчивости задан­ной системы в эксплуатационных режимах.

Пусть вертикальный стержень закреплен ниж­ним концом, а на свободном верхнем конце цент­рально приложена продольная сила Р (рис. 7.1). На начальном этапе нагружения равновесное состояние системы определяется как простое продольное сжатие, так как на данном этапе нагружения в поперечных сечениях стержня, за иск­лючением продольной силы, остальные силовые факторы равны нулю. При дальнейшем росте внешней силы Р, обнаруживается, что при некотором ее значении P = PKP , стержень изогнется. Так как явление изгиба тесно связано с действием изгибающих момен­тов, возникающих в поперечных сечениях стержня, можем утверж­дать, что при P = PKP происходила смена формы равновесного сос­тояния системы. Если на начальном этапе нагружения P < PKP , равновесное состояние вертикального стержня определялось как простое сжатие, то при P > PKP сжатие сопровождается изгибом. Это означает, что при P = PKP  происходила потеря устойчивости системы.

Заметим, что в данном случае, смена формы равновесного сос­тояния сопровождается и сменой формы деформирования: в докри­тическом  прямолинейная форма деформирования, в закритиче­ском  криволинейная, а в критическом  смешанная форма.

Заметим также, что для гибких стержней потеря устойчивости может наступить при напряжениях, значительно меньших предела прочности материалов. Поэтому расчет стержней должен выпол­няться при условии, что сжимающие напряжения не превышают критического значения с точки зрения потери их устойчивости:

, (7.1)

где РKP  значение сжимающей силы, при котором стержень пере­ходит из прямолинейного состояния равновесия к криволинейно­му; F  площадь сечения стержня.

Рис. 7.2

Изучение устойчивости стержней начнем с простейшей задачи о стержне с двумя шарнир­но опертыми концами при действии центрально сжи­мающей силы Р (рис. 7.2). Впервые эта задача была поставлена и решена Л.Эйлером в середине ХVIII века и носит его имя.

Рассмотрим условия, при которых происходит переход от цен­трально сжатого состояния к изогнутому, т.е. становится возмож­ной криволинейная форма оси стержня при центрально приложен­ной сжимающей силе Р. Предполагая, что изгиб стержня будет происходить в плоскости минимальной жесткости, записывая диф­ференциальное уравнение упругой линии балки и ограничиваясь рассмотрением только малых перемещений, имеем:

Анализ этих решений говорит о том, что все они могут быть представлены в следующем виде:

РKP = . или . (7.12)

где   коэффициент приведения длины. Он показывает, во сколь­ко раз следует изменить длину шарнирно опертого стержня, чтобы критическая сила для него равнялась бы критической силе стержня длиной l в рассматриваемых условиях закрепления.

Эта сила (7.12) носит название критической эйлеровой силы. Как показали опыты, решение Эйлера подтверждалось не во всех случаях. Причина состоит в том, что формула Эйлера была получена в предположении, что при любой нагрузке стержень ра­ботает в пределах упругих деформаций по закону Гука. Следова­тельно, его нельзя применять в тех ситуациях, когда напряжения превосходят предел пропорциональности.

Контрольные вопросы:

1.В чем суть явления потери устойчивости сжатой стойки?

2. Критическая сила и по какой формуле она определяется?

3. Укажите пределы применимости формулы Эйлера. Что такое гибкость стойки?

4. Как влияют условия закрепления стоек на значение критической силы?