
- •Раздел 1.
- •Тема 1.1 (2 часа).
- •Определения, условные буквенные и графические обозначения. Система заземления нейтралей. Стандартная шкала мощностей и напряжений.
- •Классификация потребителей электрической энергии.
- •Лекция 2.
- •Тема 1.2 (1 час). План
- •1) Технологические установки:
- •2) Освещение:
- •Графики нагрузок сэс
- •Суточные графики нагрузки.
- •Определение нагрузок и расхода электроэнергии
- •Раздел 3.
- •1. Синхронные генераторы лекция 3.
- •Тема 9 (2 часа).
- •Принцип действия, устройство, основные параметры генераторов
- •Системы охлаждения, возбуждения.
- •4.1.2 Системы возбуждения генераторов
- •4.1.4 Включение генераторов на параллельную работу
- •Раздел 4.
- •1. Силовые трансформаторы и автотрансформаторы лекция 4.
- •Тема 10 (2 часа).
- •Принцип действия, устройство, типы и основные параметры трансформаторов
- •4.2.3 Системы охлаждения силовых трансформаторов
- •4.2.4 Схемы и группы соединений
- •4.2.5 Регулирование напряжений
- •4.2.6 Включение трансформаторов на параллельную работу
- •4.2.7 Нагрузочная способность трансформаторов
- •4.2.8 Автотрансформаторы, особенности конструкции и режимы работы
- •Преобразуя правую часть выражения, получаем
- •Мощность общей обмотки
- •Тема 5 (2 часа).
- •Короткое замыкание вблизи синхронного генератора
- •Координация токов кз. Способы ограничения токов кз (секционирование, реакторы, трансформаторы с расщепленной обмоткой).
- •3.5.1. Реакторы. Принцип действия, конструкции, область применения
- •Применение трансформаторов с расщепленными обмотками
- •Раздел 5.
- •1. Электрооборудование распределительных устройств
- •Тема 8.1-8.5 (10 часов). Лекция 6. План
- •2.2.2. Тепловое действие тока. Определение Iдл. Доп .
- •2.3.1. Термическое действие токов кз.
- •1.3.2. Электродинамическое действие токов кз.
- •Тема 8.2-8.3 (2 часа)
- •Тема 8.3
- •2.1.3. Отключение цепей переменного тока
- •2.1.4. Основные способы гашения дуги Способы гашения дуги в коммутационных аппаратах до 1000 в
- •Основные способы гашения дуги в аппаратах выше 1 кВ
- •. Гибкие шины, конструкции и выбор
- •3.1.2. Жесткие шины, кэт. Конструкции и выбор.
- •Ik(3) 20 кА и провода вл при iy 50 кА
- •3.1.3 Изоляторы, конструкции и выбор
- •3.1.4 Конструкции контактов шин и аппаратов. Основные характеристики контактных соединений.
- •Лекция 8.
- •Тема 8.4 (2 часа) Электрические аппараты. Коммутационные аппараты
- •3.2.1 Рубильники, пакетные выключатели и переключатели
- •3.2.2. Плавкие предохранители. Контакторы. Магнитные пускатели.
- •Iном Iнорм.Расч;
- •Iоткл.Ном Iп.Ож Iп0,
- •3.2.3. Воздушные автоматичесакие выключатели и узо
- •20 Защелка
- •Проверка автоматических выключателей
- •Iном Iнорм.Расч;
- •Iоткл.Ном Iп. Iп0;
- •Iвкл iуд; Та.Норм Та. Устройство защитного отключения
- •Тема 8.3 (2 часа)
- •1.2. Короткозамыкатели и отделители. Принцип действия, конструкции, марки, условия выбора
- •1.3. Плавкие предохранители
- •Лекция 10.
- •Тема 8.3 (2 часа) Коммутационные аппараты выше 1000 в. План.
- •3.3.1. Коммутационные аппараты на напряжение выше 1000 в
- •3.3.2. Выключатели нагрузки
- •3.3.3. Вакуумные выключатели
- •3.3.4. Элегазовые выключатели
- •3.3.5. Приводы выключателей
- •3.3.6. Выбор выключателей при проектировании. Новые тенденции применения выключателей
- •Iном Iнорм.Расч;
- •Тема 8.5 (2 час)
- •3.4.2. Выбор трансформаторов тока
- •Тема 8.5 (2 час)
- •3.4.4. Векторные диаграммы, классы точности
- •Лекция 13. Тема (6 час) План.
- •5. Релейная защита и автоматика
- •6. Автоматизация процесса производства электроэнергии на электростанциях
- •Лекция № . Раздел 5. Тема 5.2. (4 часа) электрические схемы ру электростанций и подстанций План
- •5.2.1 Механизмы собственных нужд. Способы регулирования производительности механизмов сн.
- •5.2.1. Контрольные вопросы
- •5.2.2 Привод механизмов собственных нужд. Асинхронные двигатели. Пуск и самозапуск электродвигателей.
- •5.2.3 Схемы сн кэс, тэц.
- •Схемы сети 6,3 кВ на блочных электростанциях (кэс)
- •Схемы сети 6,3 кВ на станциях с поперечными связями в тепловой части (тэц)
- •5.2.4. Схемы сн подстанций
- •5.2.5. Определение расчетных нагрузок и выбор числа и мощности трансформаторов сн.
- •Контрольные вопросы
- •Лекция . Раздел 6. Тема 6.1. (1час) вспомогательные устройства План
- •6.1. Заземляющие устройства (зу) и защита от перенапряжений.
- •6.1.1. Действие электрического тока на человека.
- •6.1.2. Назначение и конструкции заземляющих устройств.
- •6.1.3. Расчет заземляющих устройств в установках с эффективно-заземленной нейтралью при напряжении110 кВ и выше, незаземленной и, резонансно-заземленной нейтралью.
- •6.1.4. Внутренние и атмосферные перенапряжения. Молниеотводы. Устройство молниезащиты.
- •6.1.5. Разрядники и ограничители перенапряжений (опн).
- •Контрольные вопросы
- •2.2. Типы электростанций
- •2.2.1. Тепловые электростанции
- •2.2.2. Газотурбинные установки
- •2.2.3. Парогазовые установки
- •2.2.4. Атомные электростанции
- •2.2.5. Гидравлические электрические станции
- •2.2.6. Приливные электрические станции
- •2.2.7. Аккумулирующие электрические станции
- •2.2.8. Солнечные электростанции
- •2.2.9. Ветровая электростанция
- •2.2.10. Геотермальные электростанции
- •2.2.11. Магнитогидродинамическое преобразование энергии
- •2.2.12. Термоэлектрические генераторы
- •2.1.13. Радиоизотопные источники энергии
- •2.2.14. Термоэмиссионные генераторы
- •2.2.15. Электрохимические генераторы
- •2.2.16. Дизельная электростанция
2.2.6. Приливные электрические станции
Существует огромное количество остроумных проектов приливных технических установок. Только во Франции к 1918 г. было опубликовано более 200 таких патентов. В начале XX в. предпринимались попытки сооружения мощных приливных электростанций. В США в 1935 г. было начато строительство ПЭС Кводди мощностью 200 тыс. кВт. Вскоре строительство, на которое ушло 7 млн долл., было прекращено из-за выявившейся высокой стоимости электроэнергии (на 33 % больше стоимости на тепловой станции). По составленному в 1940 г. в СССР проекту Кислогубская ПЭС вырабатывала бы электроэнергию стоимостью в 2 раза большей, чем у речных электростанций.
Приливные электрические станции (ПЭС) выгодно отличаются от ГЭС тем, что их работа определяется космическими явлениями и не зависит от многочисленных погодных условий, определяемых случайными факторами.
Наиболее существенный недостаток ПЭС неравномерность их работы. Неравномерность приливной энергии в течение лунных суток и лунного месяца, отличающихся от солнечных, не позволяет систематически использовать ее в периоды максимального потребления в системах. Можно компенсировать неравномерность работы ПЭС, совместив ее с ГАЭС. В то время, когда имеется избыточная мощность ПЭС, ГАЭС работает в насосном режиме, потребляя эту мощность и перекачивая воду в верхний бассейн. Во время спадов в работе ПЭС в генераторном режиме работает ГАЭС, выдавая электроэнергию в систему. В техническом отношении такой проект удачен, но дорогостоящ, так как требуется большая установленная мощность электрических машин.
Также удачно ПЭС может сочетаться с речной ГЭС, имеющей водохранилище. При совместной работе ГЭС увеличивает мощность при спаде мощности ПЭС и ее остановке; в то время, когда ПЭС работает с достаточно большой мощностью, ГЭС запасает воду в водохранилище. Таким образом, можно уменьшить как суточную, так и сезонную неравномерность работы ПЭС.
ПЭС работают в условиях быстрого изменения напора, поэтому их турбины должны иметь высокие КПД при переменных напорах. В настоящее время создана достаточно совершенная и компактная горизонтальная турбина двойного действия. Электрический генератор и часть деталей турбины заключены в водонепроницаемую капсулу и весь гидроагрегат погружен в воду.
2.2.7. Аккумулирующие электрические станции
Производство электроэнергии на электрических станциях и ее потребление различными приемниками представляют собой процессы, взаимосвязанные таким образом, что в силу физических закономерностей мощность потребления электроэнергии в какой-либо момент времени должна быть равна генерируемой мощности.
При идеальном равномерном потреблении электроэнергии должна происходить равномерная работа определенного числа электростанций. В действительности работа большинства отдельных электроприемников неравномерна и суммарное потребление электроэнергии также неравномерно. Можно привести множество примеров неравномерности работы установок и приборов, потребляющих электроэнергию. Завод, работающий в одну или две смены, неравномерно потребляет электрическую энергию в течение суток. Улицы и квартиры освещают только в определенные часы суток. В утренние и вечерние часы коммунальная нагрузка наибольшая.
График нагрузки некоторого района или города, представляющий собой изменение во времени суммарной мощности всех потребителей, имеет провалы и максимумы. Это означает, что в одни часы суток требуется большая суммарная мощность генераторов, а в другие часы часть генераторов или электростанций должна быть отключена или работать с уменьшенной нагрузкой. Это приводит к недоиспользованию оборудования и удорожанию энергосистем. Так, снижение числа часов использования установленной мощности крупных ТЭС с 6000 до 4000 ч в год приводит к возрастанию себестоимости вырабатываемой электроэнергии на 3035 %.
Рис. 2.16. Гидроаккумулирующая электростанция (схема)
Энергетики по возможности принимают меры по выравниванию графика суммарной нагрузки потребителей. Так, вводится дифференцированная стоимость электроэнергии в зависимости от того, в какой период времени она потребляется. В целом возможности выравнивания потребления электроэнергии невелики. Следовательно, электроэнергетические системы должны быть достаточно маневренными, способными быстро изменять мощность электростанций.
Анализ тенденций в потреблении электрической энергии показывает, что в дальнейшем неравномерность потребления будет увеличиваться по мере роста благосостояния населения и связанного с ним увеличения коммунально-бытовой нагрузки. Такое положение характерно не только для нашей страны. В большинстве стран Западной Европы неравномерность в потреблении электроэнергии такова, что в течение часа изменение нагрузки достигает 30 % от максимальной мощности и в перспективе также ожидается увеличение неравномерности. Кардинально изменить характер потребления электроэнергии очень трудно, так как он зависит от установившегося ритма жизни людей и ряда не зависящих от людей объективных обстоятельств. Например, нельзя изменить того факта, что электрическое освещение нужно в вечерние часы с наступлением темноты.
Большая часть электроэнергии (80 %) вырабатывается на ТЭС, для которых наиболее желателен равномерный график нагрузки. На агрегатах этих станций невыгодно проводить регулирование мощности.
П
ериодические
включения и отключения ТЭС не позволяют
решить задачу регулирования мощности
из-за большой продолжительности этих
процессов. На запуск тепловой станции
в лучшем случае требуются часы. Кроме
того, работа крупных ТЭС в резко
переменном режиме нежелательна, так
как приводит к повышенному расходу
топлива, повышенному износу теплосилового
оборудования и, следовательно, снижению
его надежности. Следует учесть также,
что ТЭС с высокими параметрами пара
имеют некоторые минимальные технически
возможные рабочие мощности, составляющие
5070
% от номинальной мощности оборудования.
Все это относится не только к ТЭС, но и
к АЭС. Поэтому в настоящее время и в
ближайшем будущем дефицит в маневренных
мощностях (пик нагрузки) покрывается
ГЭС, у которых набор полной мощности с
нуля можно произвести за 12
мин.
Задачу снятия пиков решают гидроаккумулирующие станции (ГАЭС), работающие следующим образом, рис. 2.17. В интервалы времени, когда электрическая нагрузка в объединенных системах минимальна, ГАЭС перекачивает воду из нижнего водохранилища в верхнее и потребляет при этом электроэнергию из системы, рис. 2.17, а. В режиме непродолжительных пиков максимальных значений нагрузки ГАЭС работает в генераторном режиме и расходует запасенную в верхнем водохранилище воду.
И европейской части СССР возможно сооружение до 200 ГАЭС. В энергосистемах, расположенных в центральной, северо-западной и южной частях, где имеется наибольший дефицит маневренной мощности, естественные перепады рельефа позволяют сооружать станции с небольшим напором (80110 м).
На первых ГАЭС для выработки электроэнергии использовали турбины Т и генераторы Г, а для перекачки воды в верхний бассейн электрические двигатели Д и насосы Н, рис. 2.17, б. Такие станции называли четырехмашинными по числу устанавливаемых машин. В силу независимости работы генератора и насоса иногда четырехмашинная схема оказывается экономически наиболее выгодной. Совмещение функций генератора и двигателя привело к трехмашинной компоновке ГАЭС, рис. 2.17, в.
ГАЭС стали особенно эффективными после появления обратимых гидротурбин, выполняющих функции и турбин, и насосов, рис. 2.17, г. Число машин при этом сведено к двум. Однако станции с двухмашинной компоновкой имеют более низкое значение КПД
Крупные действующие ГАЭС: в районе Москвы первая ГАЭС с обратимыми гидроагрегатами общей мощностью 200 МВт; Круахан (Великобритания) 400 МВт, напор 440 м, введена в (1966 г.); Том-Сок (США) 350 МВт, в двух агрегатах по 175 МВт, напор 253 м (1963 г.); Хоэнварте-11 (ГДР) 320 МВт, напор 305 м (1965 г.); Вианден (Люксембург) 900 МВт, напор 280 м (1964 г.). Общая мощность ГАЭС в странах мира к 1970 г. составляла 15 ГВт.