
- •Раздел 1.
- •Тема 1.1 (2 часа).
- •Определения, условные буквенные и графические обозначения. Система заземления нейтралей. Стандартная шкала мощностей и напряжений.
- •Классификация потребителей электрической энергии.
- •Лекция 2.
- •Тема 1.2 (1 час). План
- •1) Технологические установки:
- •2) Освещение:
- •Графики нагрузок сэс
- •Суточные графики нагрузки.
- •Определение нагрузок и расхода электроэнергии
- •Раздел 3.
- •1. Синхронные генераторы лекция 3.
- •Тема 9 (2 часа).
- •Принцип действия, устройство, основные параметры генераторов
- •Системы охлаждения, возбуждения.
- •4.1.2 Системы возбуждения генераторов
- •4.1.4 Включение генераторов на параллельную работу
- •Раздел 4.
- •1. Силовые трансформаторы и автотрансформаторы лекция 4.
- •Тема 10 (2 часа).
- •Принцип действия, устройство, типы и основные параметры трансформаторов
- •4.2.3 Системы охлаждения силовых трансформаторов
- •4.2.4 Схемы и группы соединений
- •4.2.5 Регулирование напряжений
- •4.2.6 Включение трансформаторов на параллельную работу
- •4.2.7 Нагрузочная способность трансформаторов
- •4.2.8 Автотрансформаторы, особенности конструкции и режимы работы
- •Преобразуя правую часть выражения, получаем
- •Мощность общей обмотки
- •Тема 5 (2 часа).
- •Короткое замыкание вблизи синхронного генератора
- •Координация токов кз. Способы ограничения токов кз (секционирование, реакторы, трансформаторы с расщепленной обмоткой).
- •3.5.1. Реакторы. Принцип действия, конструкции, область применения
- •Применение трансформаторов с расщепленными обмотками
- •Раздел 5.
- •1. Электрооборудование распределительных устройств
- •Тема 8.1-8.5 (10 часов). Лекция 6. План
- •2.2.2. Тепловое действие тока. Определение Iдл. Доп .
- •2.3.1. Термическое действие токов кз.
- •1.3.2. Электродинамическое действие токов кз.
- •Тема 8.2-8.3 (2 часа)
- •Тема 8.3
- •2.1.3. Отключение цепей переменного тока
- •2.1.4. Основные способы гашения дуги Способы гашения дуги в коммутационных аппаратах до 1000 в
- •Основные способы гашения дуги в аппаратах выше 1 кВ
- •. Гибкие шины, конструкции и выбор
- •3.1.2. Жесткие шины, кэт. Конструкции и выбор.
- •Ik(3) 20 кА и провода вл при iy 50 кА
- •3.1.3 Изоляторы, конструкции и выбор
- •3.1.4 Конструкции контактов шин и аппаратов. Основные характеристики контактных соединений.
- •Лекция 8.
- •Тема 8.4 (2 часа) Электрические аппараты. Коммутационные аппараты
- •3.2.1 Рубильники, пакетные выключатели и переключатели
- •3.2.2. Плавкие предохранители. Контакторы. Магнитные пускатели.
- •Iном Iнорм.Расч;
- •Iоткл.Ном Iп.Ож Iп0,
- •3.2.3. Воздушные автоматичесакие выключатели и узо
- •20 Защелка
- •Проверка автоматических выключателей
- •Iном Iнорм.Расч;
- •Iоткл.Ном Iп. Iп0;
- •Iвкл iуд; Та.Норм Та. Устройство защитного отключения
- •Тема 8.3 (2 часа)
- •1.2. Короткозамыкатели и отделители. Принцип действия, конструкции, марки, условия выбора
- •1.3. Плавкие предохранители
- •Лекция 10.
- •Тема 8.3 (2 часа) Коммутационные аппараты выше 1000 в. План.
- •3.3.1. Коммутационные аппараты на напряжение выше 1000 в
- •3.3.2. Выключатели нагрузки
- •3.3.3. Вакуумные выключатели
- •3.3.4. Элегазовые выключатели
- •3.3.5. Приводы выключателей
- •3.3.6. Выбор выключателей при проектировании. Новые тенденции применения выключателей
- •Iном Iнорм.Расч;
- •Тема 8.5 (2 час)
- •3.4.2. Выбор трансформаторов тока
- •Тема 8.5 (2 час)
- •3.4.4. Векторные диаграммы, классы точности
- •Лекция 13. Тема (6 час) План.
- •5. Релейная защита и автоматика
- •6. Автоматизация процесса производства электроэнергии на электростанциях
- •Лекция № . Раздел 5. Тема 5.2. (4 часа) электрические схемы ру электростанций и подстанций План
- •5.2.1 Механизмы собственных нужд. Способы регулирования производительности механизмов сн.
- •5.2.1. Контрольные вопросы
- •5.2.2 Привод механизмов собственных нужд. Асинхронные двигатели. Пуск и самозапуск электродвигателей.
- •5.2.3 Схемы сн кэс, тэц.
- •Схемы сети 6,3 кВ на блочных электростанциях (кэс)
- •Схемы сети 6,3 кВ на станциях с поперечными связями в тепловой части (тэц)
- •5.2.4. Схемы сн подстанций
- •5.2.5. Определение расчетных нагрузок и выбор числа и мощности трансформаторов сн.
- •Контрольные вопросы
- •Лекция . Раздел 6. Тема 6.1. (1час) вспомогательные устройства План
- •6.1. Заземляющие устройства (зу) и защита от перенапряжений.
- •6.1.1. Действие электрического тока на человека.
- •6.1.2. Назначение и конструкции заземляющих устройств.
- •6.1.3. Расчет заземляющих устройств в установках с эффективно-заземленной нейтралью при напряжении110 кВ и выше, незаземленной и, резонансно-заземленной нейтралью.
- •6.1.4. Внутренние и атмосферные перенапряжения. Молниеотводы. Устройство молниезащиты.
- •6.1.5. Разрядники и ограничители перенапряжений (опн).
- •Контрольные вопросы
- •2.2. Типы электростанций
- •2.2.1. Тепловые электростанции
- •2.2.2. Газотурбинные установки
- •2.2.3. Парогазовые установки
- •2.2.4. Атомные электростанции
- •2.2.5. Гидравлические электрические станции
- •2.2.6. Приливные электрические станции
- •2.2.7. Аккумулирующие электрические станции
- •2.2.8. Солнечные электростанции
- •2.2.9. Ветровая электростанция
- •2.2.10. Геотермальные электростанции
- •2.2.11. Магнитогидродинамическое преобразование энергии
- •2.2.12. Термоэлектрические генераторы
- •2.1.13. Радиоизотопные источники энергии
- •2.2.14. Термоэмиссионные генераторы
- •2.2.15. Электрохимические генераторы
- •2.2.16. Дизельная электростанция
2.2.2. Тепловое действие тока. Определение Iдл. Доп .
Допускаемые в продолжительном режиме токи шин, проводов, кабелей и номинальные токи аппаратов, установленные на основании соответствующих расчетов и испытаний с учетом ГОСТ 8024–69, указаны в специальных каталогах или таблицах.
Правильный выбор номинального тока аппарата или допускаемого тока проводника гарантирует от опасных перегревов при продолжительной работе.
Для этого необходимо, чтобы ток утяжеленного режима в рассматриваемой цепи Iутв не превышал номинального тока аппарата и длительно допускаемого тока проводника в данной цепи:
Iутв Iдоп, Iутв Iном .
Если температура окружающей среды 0 отличается от номинальной ном, то допускаемый ток для аппарата или проводника может быть определен из предположения, что тепловыделение пропорционально квадрату тока, а теплоотдача пропорциональна превышению температуры:
;
и
.
Отсюда получаем:
,
где доп — допускаемая температура (наблюдаемая) для данного аппарата или проводника; k — коэффициент теплоотдачи; F — поверхность охлаждения; R — сопротивление проводника.
Выбор сечений проводов, шин и кабелей производится по экономической плотности тока Jэк (А/мм2), которая определяется продолжительностью использования максимальной нагрузки, материалом и конструкцией проводников и задается Правилами устройств электроустановок:
,
где Iнорм — наибольший длительный ток нагрузки цепи в нормальном режиме работы.
Экономическое сечение Sэк дает наилучшее сочетание расхода металла и потерь электроэнергии в сети, тем самым обеспечивая наименьшие ежегодные расчетные затраты.
Сечение проводника, выбранное по Jэк, должно удовлетворять условию допустимого нагрева максимальным током в форсированном режиме работы, а также условиям термической и динамической стойкости.
2.3.1. Термическое действие токов кз.
Способность аппаратов, проводников и изоляторов противостоять электродинамическим и термическим воздействиям, возникающим при прохождении через них наибольших токов КЗ, называют соответственно электродинамической и термической стойкостью.
При КЗ с достаточной для практики точностью процесс нагрева можно принять адиабатическим:
,
где ik (t) — функция, характеризующая изменение тока КЗ во времени; R — сопротивление проводника при данной температуре ; C — удельная теплоемкость проводника при данной температуре; G — масса проводника.
Учитывая, что сопротивление проводника и его удельная теплоемкость являются функциями температуры:
,
где 0 и с0 — удельные сопротивление и теплоемкость проводника при начальной температуре н=0 С; и — температурные коэффициенты сопротивления и теплоемкости; S, l, — площадь поперечного сечения, длина и плотность проводника.
Разделяя переменные и интегрируя в требуемых пределах, получаем уравнение
которое позволяет определить конечную температуру проводника к при нагреве его током КЗ от начальной температуры н. Однако аналитическое решение этого уравнения сложно, и поэтому для распространенных проводниковых материалов построены зависимости значений второго интеграла от конечной температуры (при н=0), которые представлены на рис. 2.8.
Рис. 2.8. Кривые для определения температуры нагрева токоведущих частей при КЗ
Первый интеграл, зависящий от тока КЗ и времени отключения tоткл, получил название импульса квадратичного тока КЗ В. Его приближенное значение может быть выражено через действующие значения полного тока и его составляющих
Где
—
действующее значение полного тока КЗ
в момент времени t;
Iп,t
—
действующее значение периодической
составляющей; iа,t
—
апериодическая составляющая.
Таким образом, импульс квадратичного тока КЗ равен сумме импульсов от периодической Bп и апериодической Bа составляющей.
Импульс от
периодической составляющей можно
определить графоаналитическим методом
путем замены плавной кривой ступенчатой
с ординатами, соответствующими средним
значениям квадратов действующих
значений токов
для каждого интервала времени
:
.
В тех случаях,
когда место замыкания удалено от
генераторов или требуется грубо (с
завышением) оценить импульс от
периодической составляющей, можно
принять, что периодическая составляющая
не затухает, т. е.
и
.
Импульс от апериодической составляющей тока КЗ равен:
.
При
находим
.
Тогда конечная температура проводника будет равна
.
На рис. 2.8 откладываем по оси ординат н и по соответствующей кривой (точка а) находим Ан. Прибавляя к Ан (на оси абсцисс) величину B/S2, получаем Ан и отвечающую ей температуру проводника к (точка б на кривой).
Конечная температура при КЗ не должна быть выше допускаемой по условию сохранения изоляции или по условию механической прочности (для неизолированных проводников).
Условие термической стойкости проводника:
;
.
Термическую стойкость аппаратов принято характеризовать номинальным током термической стойкости Iтер при определенной длительности его прохождения, называемой номинальным временем термической стойкости tтер. Для проверки аппарата на термическую стойкость сопоставляют нормированное заводом изготовителем значение теплового импульса с расчетным. Условие термической стойкости аппарата формулируется в виде:
.
Методика расчета термической и динамической стойкости проводников и аппаратов боле подробно приведена в руководящих указаниях по расчету токов короткого замыкания и выбору электрооборудования РД 153–34.0–20.527–98