
- •Главные этапы в развитии теории света
- •1.4. Геометрическая оптика
- •Законы распространения света.
- •2.1.4. Преломление света на сферической поверхности.
- •3.1.4. Тонкие линзы. Формула тонкой линзы.
- •4.1.4. Аберрации линз.
- •Оптические приборы.
- •Задачи к зачету
- •2.2. Интерференция света
- •1.2.4. Интерференция света. Условия образования интерференционного максимума и минимума.
- •2.2.4. Методы наблюдения интерференции света
- •3.2.4. Расчет интерференционной картины от двух источников.
- •4.2.4. Интерференция света в тонких пленках.
- •5.2.4. Применение интерференции. Интерферометры.
- •Задачи к зачету
- •3.4. Дифракция света
- •1.3.4. Принцип Гюйгенса.
- •2.3.4. Метод зон Френеля. Закон прямолинейного распространения света.
- •3.3.4. Дифракция Френеля на круглом отверстии и диске.
- •4.3.4. Дифракция Фраунгофера (дифракция в параллельных лучах).
- •5.3.4. Дифракционная решетка
- •6.3.4. Разрешающая способность оптических приборов.
- •Задачи к зачету
- •4.4. Поляризация света.
- •1.4.4. Естественный и поляризованный свет
- •2.4.4. Поляризация света при отражении и преломлении света.
- •3.4.4. Двойное лучепреломление
- •4.4.4. Поляризационные призмы и поляроиды.
- •5.4.4. Искусственная оптическая анизотропия
- •6.4.4. Вращение плоскости поляризации.
- •Задачи к зачету
- •5.4. Элементы теории относительности.
- •1.5.4. Скорость света и ее опытное определение.
- •2.5.4. Принцип относительности Галилея и законы электродинамики
- •2.5.4. Преобразования Лоренца.
- •3.5.4. Следствия из преобразований Лоренца.
- •1. Относительность одновременности.
- •2. Относительность промежутков времени.
- •3. Относительность длин отрезков.
- •4. Релятивистский закон сложения скоростей.
- •5. Интервал между событиями.
- •6.4. Тепловое излучение.
- •1.6.4. Тепловое излучение и его характеристики
- •2.6.4. Закон Кирхгофа. Универсальная функция Кирхгофа.
- •3.6.4. Законы Стефана – Больцмана и смещения Вина.
- •4.6.4. Формулы Релея – Джинса, Вина и Планка
- •4.6.4. Оптическая пирометрия.
- •Задачи к зачету
- •7.4. Квантовые свойства света.
- •1.7.4. Явление фотоэффекта и его законы.
- •2. Максимальная кинетическая энергия фотоэлектронов пропорциональна частоте падающего излучения.
- •3. Существует красная граница фотоэффекта, т.Е. Минимальная частота света, при которой свет любой интенсивности фотоэффекта не вызывает.
- •2.7.4. Уравнение Эйнштейна для фотоэффекта. Фотон.
- •3.7.4. Эффект Комптона и его объяснение на основе квантовых представлений.
- •4.7.4. Фотон. Масса и импульс фотона. Давление света.
- •Задачи к зачету
- •8.4. Теория атома водорода.
- •1.8.4. Спектр атома водорода
- •2.8.4. Атом водорода по Бору.
- •3.8.4. Рентгеновское излучение.
- •4.8.4. Поглощение, спонтанное и вынужденное излучение. Лазеры.
- •9.4. Элементы квантовой механики.
- •1.9.4. Корпускулярно - волной дуализм.
- •2.9.4. Соотношение неопределенностей Гейзенберга
- •3.9.4. Волновая функция и ее статистический смысл.
- •4.9.4. Уравнение Шредингера.
- •5.9.4. Частица в одномерной прямоугольной потенциальной яме с бесконечно высокими стенками.
- •5.9.4. Гармонический осциллятор в квантовой механике.
- •6.9.4. Атом водорода в квантовой механике.
- •Задачи к зачету
- •10.4. Элементы физики атомного ядра.
- •1.10.4. Открытие нейтрона. Строение атомного ядра.
- •2.10.4. Дефект масс. Энергия связи атомного ядра.
- •3.10.4. Радиоактивное излучение и его состав.
- •5.10.4. Ядерные реакции и их основные типы.
4.1.4. Аберрации линз.
В оптике существует понятие об идеальной оптической системе. Принято считать, что такая система удовлетворяет следующим трем условиям:
- гомоцентрический пучок лучей (т.е. испускаемый точечным источником света), пройдя через оптическую систему, остается гомоцентрическим, все его лучи сходятся в одной точке – дают одно точечное изображение);
- изображение предмета по форме остается подобным самому предмету;
- изображение плоскости, перпендикулярной к оптической оси, остается также перпендикулярно к ней.
Реальные оптические системы и линзы дают изображение с нарушением гомоцентричности и законов подобия: точка, прямая, плоскость изображаются в виде пятна, кривой, искаженной плоскости. Изображение искажается, кроме того, за счет явлений дисперсии и дифракции. Дефекты оптических систем и линз называют аберрациями.
Сферическая аберрация.
Сферическая аберрация – явление нарушения гомоцентричности лучей, прошедших через оптическую систему без нарушения симметрии этих лучей. Пусть, например, пучок лучей параллельных оптической оси падает на линзу (рис. 9; лучи 1,2,3,4,5.). Согласно условиям идеальной оптической системы лучи такого пучка должны, после преломления в линзе, сойтись в ее фокусе. В действительности в фокусе сойдутся лишь параксиальные лучи (луч 1 на рис. 9). Лучи падающие ближе к краям линзы (2, 3, 4 и 5) будут иметь большие углы преломления, чем лучи в центральной зоне линзы. Вследствие этого они сходятся в точках, не совпадающих с фокусом. Следовательно, параллельные лучи, не дают точечного изображения, т.е. нарушается гомоцентричность пучка лучей.
Мерой
сферической аберрации являются:
продольная
и поперечная сферическая аберрации.
Поперечная
сферическая аберрация
- радиус пятна изображения точечного
источника света при данной диафрагме,
на экране установленном в фокусе линзы.
Продольная
сферическая аберрация – разность
расстояний от линзы до точки схождения
крайних лучей при данной диафрагме и
фокусным расстоянием
.
Собирающие линзы имеют отрицательную продольную аберрацию, а рассеивающие – положительную. Поэтому, комбинируя собирающие и рассеивающие линзы можно значительно уменьшить сферическую аберрацию.
Нетрудно видеть, что диафрагмирование, ограничивая ширину светового пучка, ослабляет сферическую аберрацию.
Одновременно
с этим изменяется глубина резкости
изображения
,
где
-
расстояние до задней точки размытия
изображения, а
- расстояние до передней точки.
Кома.
Кома
– явление аналогичное сферической
аберрации для точечного источника света
лежащего на некотором расстоянии от
оптической оси линзы (рис. 10). На экране
Э, установленном в фокальной плоскости
линзы, точка А изображается в виде пятна
эллиптической формы, имеющей неравномерную
яркость. Размер пятна увеличивается с
увеличением расстояния
.
Это объясняется тем, что от такого
источника лучи пересекаются в точке
лежащей вне плоскости экрана (рис. 10).
А
стигматизм.
А
стигматизм
– аберрация, возникающая из-за неравенства
кривизны поверхностей линзы в различных
плоскостях.
Причиной этого может быть неточность
изготовления поверхности линзы или
падение на линзу косых лучей от источника
не лежащего на оптической оси линзы.
Рассмотрим случай явления астигматизма при косом падении лучей на линзу (рис. 11). Лучи от источника S, лежащего вне оптической оси линзы, падают на нее под некоторым углом. Для лучей идущих в горизонтальной плоскости и лучей, идущих в вертикальной плоскости кривизна поверхности линзы различна. В результате точки схождения лучей падающих в горизонтальной плоскости не совпадут с точкой схождения лучей падающих в вертикальной плоскости.
При установке экрана в этих точках мы увидим изображение точки в виде отрезка прямой либо вертикального, либо горизонтального. При установке экрана между этими точками изображение имеет вид эллипса.
Количественно астигматизм характеризуется расстоянием между точками схождения лучей, падающих в горизонтальной и вертикальной плоскостях. Оно называется астигматической разностью линзы
,
где
- расстояние от линзы до экрана, при
котором четко видны горизонтальные
линии, а
-
расстояние от линзы до экрана, при
котором четко видны вертикальные линии.
Астигматизм хорошо наблюдается по изображению миллиметровой сетки, нанесенной на прозрачную пластинку, в косых лучах, проходящих через пластинку и линзу.
Зависимость
астигматической разности от угла падения
лучей
показана на рисунке 12 в полярных
координатах.
Астигматизм исправляется путем подбора радиусов кривизны преломляющих поверхностей и их фокусных расстояний.
Хроматическая аберрация.
Хроматическая аберрация вызывается дисперсией света проходящего через линзу. Спектральное разложение света создает окраску изображения, особенно на краях изображения предмета.
Формула фокусного расстояния линзы
содержит в себе показатель преломления
n. Как известно, показатель
преломления различен для световых волн
с различной длиной волны. В силу этого
точки схождения лучей различного цвета
не совпадают, и изображение приобретает
размытый характер с цветовой окраской.
Так как разные сорта стекла обладают различной дисперсией, то комбинируя собирающие и рассевающие линзы, изготовленные из различных стекол можно в значительной степени уменьшить хроматическую аберрацию.
Устранение аберраций возможно лишь путем подбора специально рассчитанных сложных оптических систем. Одновременное исправление всех аберраций задача крайне сложная, а иногда даже неразрешимая. Поэтому обычно полностью устраняют лишь те погрешности линз, которые в данном конкретном случае особенно вредны.