
- •Главные этапы в развитии теории света
- •1.4. Геометрическая оптика
- •Законы распространения света.
- •2.1.4. Преломление света на сферической поверхности.
- •3.1.4. Тонкие линзы. Формула тонкой линзы.
- •4.1.4. Аберрации линз.
- •Оптические приборы.
- •Задачи к зачету
- •2.2. Интерференция света
- •1.2.4. Интерференция света. Условия образования интерференционного максимума и минимума.
- •2.2.4. Методы наблюдения интерференции света
- •3.2.4. Расчет интерференционной картины от двух источников.
- •4.2.4. Интерференция света в тонких пленках.
- •5.2.4. Применение интерференции. Интерферометры.
- •Задачи к зачету
- •3.4. Дифракция света
- •1.3.4. Принцип Гюйгенса.
- •2.3.4. Метод зон Френеля. Закон прямолинейного распространения света.
- •3.3.4. Дифракция Френеля на круглом отверстии и диске.
- •4.3.4. Дифракция Фраунгофера (дифракция в параллельных лучах).
- •5.3.4. Дифракционная решетка
- •6.3.4. Разрешающая способность оптических приборов.
- •Задачи к зачету
- •4.4. Поляризация света.
- •1.4.4. Естественный и поляризованный свет
- •2.4.4. Поляризация света при отражении и преломлении света.
- •3.4.4. Двойное лучепреломление
- •4.4.4. Поляризационные призмы и поляроиды.
- •5.4.4. Искусственная оптическая анизотропия
- •6.4.4. Вращение плоскости поляризации.
- •Задачи к зачету
- •5.4. Элементы теории относительности.
- •1.5.4. Скорость света и ее опытное определение.
- •2.5.4. Принцип относительности Галилея и законы электродинамики
- •2.5.4. Преобразования Лоренца.
- •3.5.4. Следствия из преобразований Лоренца.
- •1. Относительность одновременности.
- •2. Относительность промежутков времени.
- •3. Относительность длин отрезков.
- •4. Релятивистский закон сложения скоростей.
- •5. Интервал между событиями.
- •6.4. Тепловое излучение.
- •1.6.4. Тепловое излучение и его характеристики
- •2.6.4. Закон Кирхгофа. Универсальная функция Кирхгофа.
- •3.6.4. Законы Стефана – Больцмана и смещения Вина.
- •4.6.4. Формулы Релея – Джинса, Вина и Планка
- •4.6.4. Оптическая пирометрия.
- •Задачи к зачету
- •7.4. Квантовые свойства света.
- •1.7.4. Явление фотоэффекта и его законы.
- •2. Максимальная кинетическая энергия фотоэлектронов пропорциональна частоте падающего излучения.
- •3. Существует красная граница фотоэффекта, т.Е. Минимальная частота света, при которой свет любой интенсивности фотоэффекта не вызывает.
- •2.7.4. Уравнение Эйнштейна для фотоэффекта. Фотон.
- •3.7.4. Эффект Комптона и его объяснение на основе квантовых представлений.
- •4.7.4. Фотон. Масса и импульс фотона. Давление света.
- •Задачи к зачету
- •8.4. Теория атома водорода.
- •1.8.4. Спектр атома водорода
- •2.8.4. Атом водорода по Бору.
- •3.8.4. Рентгеновское излучение.
- •4.8.4. Поглощение, спонтанное и вынужденное излучение. Лазеры.
- •9.4. Элементы квантовой механики.
- •1.9.4. Корпускулярно - волной дуализм.
- •2.9.4. Соотношение неопределенностей Гейзенберга
- •3.9.4. Волновая функция и ее статистический смысл.
- •4.9.4. Уравнение Шредингера.
- •5.9.4. Частица в одномерной прямоугольной потенциальной яме с бесконечно высокими стенками.
- •5.9.4. Гармонический осциллятор в квантовой механике.
- •6.9.4. Атом водорода в квантовой механике.
- •Задачи к зачету
- •10.4. Элементы физики атомного ядра.
- •1.10.4. Открытие нейтрона. Строение атомного ядра.
- •2.10.4. Дефект масс. Энергия связи атомного ядра.
- •3.10.4. Радиоактивное излучение и его состав.
- •5.10.4. Ядерные реакции и их основные типы.
2.7.4. Уравнение Эйнштейна для фотоэффекта. Фотон.
В 1905 году А.Эйнштейн, воспользовавшись идей Планка о прерывистом характере излучения света, объяснил законы фотоэффекта. Но Эйнштейн пошел дальше Планка. Согласно идее Эйнштейна, свет не только излучается отдельными порциями, но и поглощается так же отдельными порциями. Иначе говоря, излученная порция энергии сохраняет свою индивидуальность до конца, т.е. до поглощения. По мнению Эйнштейна, явления теплового излучения, фотолюминесценции, фотоэффекта и другие, связанные с возникновением и поглощением света гораздо лучше объясняются предположением, что энергия распределяется по пространству дискретно. Энергия пучка света, вышедшего из каждой точки не распределяется непрерывно во все возрастающем объеме, а складывается из конечного числа локализованных в пространстве неделимых квантов энергии поглощаемых или возникающих только целиком.
Если это так, то на основе закона сохранения энергии можно написать уравнение
,
7.1
которое полностью объясняет законы
фотоэффекта. По мнению Эйнштейна, вся
энергия, приобретаемая электроном,
переносится светом в виде порции
,
величина которой зависит от частоты
колебаний и поглощается целиком. Электрон
не заимствует энергию у атома вещества
катода, благодаря чему природа вещества
катода не играет ни какой роли. Так как
,
то уравнение Эйнштейна можно записать
в следующем виде
,
и, следовательно, зная задерживающее напряжение можно рассчитать значение постоянной Планка.
Планк решительно противился этой гипотезе Эйнштейна. В 1911 году он писал: « Когда думаешь о полном опытном подтверждении, которое получила электродинамика Максвелла при исследовании даже самых сложных явлений интерференции, когда думаешь о необычайных трудностях, с которыми придется столкнуться всем теориям при объяснении электрических и магнитных явлений, если они откажутся от этой электродинамики, инстинктивно испытываешь неприязнь ко всякой попытке поколебать ее фундамент. По этой причине мы и далее оставим в стороне гипотезу «световых квантов», тем более что эта гипотеза находится в зародышевом состоянии.
Будем считать, что все явления, происходящие в пустоте, в точности соответствуют уравнениям Максвелла и не имеют никакого отношения к константе ».
Интересно, что, рекомендуя А.Эйнштейна для избрания действительным членом Берлинской академии наук, Планк в своей рекомендации просил не сильно ставить ему в вину идею о прерывистом характере поглощения света.
В 1916 году Милликен усовершенствовав установку Столетова, экспериментально подтвердил справедливость уравнения Эйнштейна.
В 1928 году П.И.Лукирский применив метод сферического конденсатора (все электроны достигают поверхности анода) с высокой точностью определил задерживающее напряжение и рассчитал значение постоянной Планка, которое совпало со значением, полученным ранее из законов теплового излучения.
Из уравнения Эйнштейна для фотоэффекта
следует, что при
свет любой интенсивности фотоэффекта
вызывать не будет.
Идея о квантовом характере света требовала экспериментального подтверждения. Среди опытов, подтверждающих эту идея следует отметить опыты Боде и Иоффе и Добронравова.
В опыте Боде тонкая пленка освещалась рентгеновскими лучами и сама становилась источником рентгеновского излучения. Два счетчика расположенные по обе стороны пленки. Попадание рентгеновского излучения в счетчик приводит к его срабатыванию и появлению отметки на бумажной ленте. Если свет волна, то при регистрации волн, излучаемых пленкой счетчики должны работать синхронно и отметки на ленте должны располагаться друг против друга. Если же излучение происходит порциями, то эта порция может полететь в ту или иную сторону и показания счетчиков должны быть беспорядочны. Экспериментальные данные говорили о том, что работа счетчиков совершенно хаотична и, следовательно, излучение носит прерывистый характер.
В опытах Иоффе и Добронравова мельчайшие пылинки висмута взвешивались в электрическом поле плоского конденсатора, нижняя пластина которого служила анодом рентгеновской трубки. Анод бомбардировался ускоренными фотоэлектронами и излучал рентгеновское излучение. Интенсивность бомбардировки подбиралась таким образом, чтобы за 1 секунду излучалось бы 1000 рентгеновских квантов. Опыт говорит о том, что в среднем каждые 30 мин 1 пылинка висмута выходила из состояния равновесия, т.е. рентгеновский квант вырывал из нее электрон.
Объяснить результаты этого опыта можно только на основе квантовых представлений. Расчеты показывают, что в пылинку может попасть один из 1800000 квантов, т.е. в среднем в пылинку будет попадать один фотон за 30 мин, что и подтверждается экспериментальными данными.