
- •Введение
- •Тема 1.3. Электрическое поле в вакууме
- •1.1.3. Электрический заряд. Закон Кулона.
- •2.1.3. Электрическое поле. Напряженность поля.
- •Поток вектора напряженности электростатического поля.
- •4.1.3. Работа по перемещению заряда в поле. Потенциал. Разность потенциалов.
- •5.1.3. Напряженность электрического поля как градиент потенциала.
- •6.1.3. Циркуляция вектора напряженности электрического поля по замкнутому контуру.
- •Тема 2.3. Электрическое поле в среде. Поляризация диэлектриков
- •Электрический диполь. Диполь в однородном и неоднородном поле.
- •Виды диэлектриков.
- •3.2.3. Поляризация диэлектриков. Напряженность электрического поля в диэлектрике.
- •4 .2.3. Электрическое смещение. Теорема Гаусса для электрического смещения.
- •5.2.3. Сегнетоэлектрики.
- •6.2.3. Пьезоэффект.
- •Тема 3.3. Проводники в электрическом поле
- •Равновесие зарядов на проводниках.
- •2.3.3. Электроемкость. Конденсаторы.
- •3.3.3.Энергия взаимодействия точечных зарядов. Энергия заряженных проводников.
- •Электростатика Примеры решения задач
- •Зачетная работа
- •Тема 4.3. Законы постоянного тока
- •1.4.3. Электрический ток. Необходимые условия существования тока.
- •2.4.3. Закон Ома для участка цепи. Дифференциальная форма закона Ома.
- •3.4.3. Источники тока. Сторонние силы. Эдс источника тока.
- •4.4.3. Работа и мощность постоянного тока. Закон Джоуля - Ленца.
- •5.4.3. Закон Ома для неоднородного участка цепи.
- •6.4.3. Разветвленные цепи. Правила Кирхгофа.
- •7.4.3. Измерительные мосты постоянного тока.
- •8.4.3. Мощность тока во внешней цепи. Кпд источника тока.
- •Законы постоянного тока Примеры решения задач
- •Тема 5.3. Магнитное поле постонного тока
- •1.5.3. Магнитное взаимодействие проводников с током. Магнитное поле.
- •2.5.3. Напряженность и индукция магнитного поля.
- •3.5.3. Закон Био-Савара-Лапласа для элемента тока. Расчет магнитных полей.
- •5.3.3.Поток вектора магнитной индукции. Теорема Гаусса для вектора .
- •6.5.3. Силы Ампера и Лоренца.
- •7.5.3. Контур с током в магнитном поле.
- •8.5.3. Работа по перемещению проводника и контура с током в магнитном поле.
- •Тема 6.3. Магнитные свойства электрона и электронной оболочки атома
- •2.6.3. Спин электрона. Спиновый магнитный момент.
- •3.6.3. Структура электронных оболочек атомов.
- •4.6.3. Гипотеза Ампера. Объемные и поверхностные токи.
- •Тема 7.3. Магнитные свойства вещества. Магнетики.
- •1.7.3. Намагниченность. Магнитное поле в веществе.
- •3.7.3. Основные типы магнетиков. Природа диа- и парамагнетизма.
- •4.7.3. Ферромагнетики и их свойства.
- •5.7.3. Природа ферромагнетизма.
- •6.7.3. Магнитные цепи.
- •Примеры решения задач
- •Тема 8.3. Электромагнитная индукция
- •1.8.3. Явление электромагнитной индукции. Закон Фарадея.
- •2.8.3. Взаимная индукция. Индуктивность.
- •3.8.3. Явление самоиндукции. Индуктивность.
- •4.8.3. Вихревые токи. Скин – эффект.
- •5.8.3. Токи при замыкании и размыкании цепи.
- •6.8.3. Энергия магнитного поля.
- •Тема 9.3. Уравнения максвелла
- •1.9.3. Вихревое электрическое поле. Первое уравнение Максвелла в интегральной форме.
- •Ток смещения. Интегральная форма второго уравнения Максвелла.
- •3.9.3. Полная система уравнений Максвелла для электромагнитного поля.
- •Тема 10.3. Электромагнитные волны
- •1.10.3. Образование свободной электромагнитной волны.
- •2.10.3. Экспериментальное исследование электромагнитных волн.
- •3.10.3. Энергия электромагнитной волны. Вектор Умова - Пойнтинга.
- •Тема 11.3. Гармонический осциллятор (электрические системы)
- •1.11.3. Свободные электромагнитные колебания. Формула Томсона.
- •2.11.3. Свободные затухающие колебания.
- •3.11.3. Вынужденные колебания.
- •4.11.3. Переменный электрический ток. Действующее значение переменного тока и напряжения.
- •5.11.3. Последовательное соединение. Резонанс напряжений.
- •6.11.3. Параллельное соединение. Резонанс токов.
- •7.11.3. Символический метод.
- •Тема 12.3. Основы классической электронной теории проводимости металлов
- •1.12.3. Экспериментальное доказательство электронной природы тока в металлах. Эффект Холла и его применение.
- •2.12.3. Классическая теория электронного газа в твердом теле.
- •3.12.3. Закон Видемана – Франца.
- •4.12.3. Трудности классической теории.
- •Тема 13.3. Контактные явления в металлах
- •1.13.3. Работа выхода электронов из металла. Виды электронной эмиссии.
- •2.13.3. Контакт двух металлов. Контактная разность потенциалов.
- •3.13.3.Термоэлектрические явления.
- •Тема 14.3. Элементы зонной теории твердых тел
- •Дискретность энергетических уровней в атоме.
- •2.14.3. Электронная проводимость металлов по квантовой теории.
- •Расщепление энергетических уровней и образование зон. Электрические свойства металлов, диэлектриков и полупроводников.
- •4.14.3. Собственная проводимость полупроводников.
- •5.14.3. Примесная проводимость полупроводников.
- •6.14.3. Контакт двух полупроводников с различным типом проводимости.
2.1.3. Электрическое поле. Напряженность поля.
При исследовании взаимодействия электрических зарядов возникает вопрос, почему возникают силы, действующие на заряды, и как они передаются от одного заряда к другому?
Для понимания происхождения и передачи сил, действующих между покоящимися зарядами, необходимо допустить наличие между зарядами какого-то физического агента, осуществляющего это взаимодействие. Этим агентом, по мнению М. Фарадея, является электрическое поле. Когда в каком либо месте появляется электрической заряд, то вокруг него появляется электрическое поле.
Основное свойство электрического поля заключается в том, что на всякий другой заряд, помещенный в это поле, будет действовать сила. Мы будем рассматривать электрические поля создаваемые неподвижными электрическими зарядами и называемые электростатическими полями.
Для обнаружения и опытного исследования, электростатических полей используется пробный электрический заряд. В качестве пробного заряда используется точечный, положительный заряд.
О
пыт
показывает, что отношение силы F,
действующей на неподвижный пробный
заряд q, помещенный в
данную точку поля, к величине этого
заряда, не зависит от величины заряда
q и может быть принято за
характеристику поля в данной точке.
Указание на неподвижный заряд имеет
принципиальное значение. Дело в том,
что силы, действующие на электрический
заряд, зависят не только от электрического,
но и от магнитного поля. Однако магнитное
поле, как показывает опыт, действует
только на движущийся электрический
заряд и не действует на неподвижный
заряд.
Напряженностью электрического поля Е называется физическая величина численно равная силе F, действующей на положительный единичный заряд, помещенный в данную точку поля.
.
1.4
Как следует из
формул 1.1 и 1.4 для поля точечного заряда
,
будем иметь:
.
1.5
Вектор напряженности электрического поля совпадает по направлению с направлением силы, действующей на положительный заряд. Поэтому вектор напряженности электрического поля направлен от положительного заряда к отрицательному заряду (рис. 2).
Д
ля
описания электрического поля нужно
задать вектор напряженности в каждой
точке поля. Это можно сделать аналитически,
выражая зависимость напряженности поля
от координат, в виде формул. Однако такую
зависимость можно представить и
графически, используя так называемые
силовые линии (линии напряженности).
Непрерывная линия, касательная к которой в каждой точке совпадает с вектором напряженности электрического поля называется силовой линией поля (рис. 3а).
Если в каждой точке поля вектор напряженности остается величиной постоянной, то поле называется однородным. Силовые линии такого поля представляют собой прямые параллельные линии (рис. 3б). Силовые линии электрического поля начинаются на положительном заряде и заканчиваются на отрицательном заряде (рис. 4). Поэтому иногда говорят, что положительный заряд можно считать истоком электрического поля, а отрицательный заряд – стоком поля.
Е
сли
электрическое поле создается не одним,
а несколькими зарядами, то на основании
принципа независимости действия сил
,
можно утверждать, что напряженность
результирующего электрического поля
будет равна геометрической сумме
напряженностей, создаваемых каждым
зарядом в отдельности, т.е.
1.6
Формула 1.6 выражает принцип суперпозиции полей. Используя принцип суперпозиции полей можно рассчитать напряженность поля создаваемого протяженным электрическим зарядом.