
- •Введение
- •Тема 1.3. Электрическое поле в вакууме
- •1.1.3. Электрический заряд. Закон Кулона.
- •2.1.3. Электрическое поле. Напряженность поля.
- •Поток вектора напряженности электростатического поля.
- •4.1.3. Работа по перемещению заряда в поле. Потенциал. Разность потенциалов.
- •5.1.3. Напряженность электрического поля как градиент потенциала.
- •6.1.3. Циркуляция вектора напряженности электрического поля по замкнутому контуру.
- •Тема 2.3. Электрическое поле в среде. Поляризация диэлектриков
- •Электрический диполь. Диполь в однородном и неоднородном поле.
- •Виды диэлектриков.
- •3.2.3. Поляризация диэлектриков. Напряженность электрического поля в диэлектрике.
- •4 .2.3. Электрическое смещение. Теорема Гаусса для электрического смещения.
- •5.2.3. Сегнетоэлектрики.
- •6.2.3. Пьезоэффект.
- •Тема 3.3. Проводники в электрическом поле
- •Равновесие зарядов на проводниках.
- •2.3.3. Электроемкость. Конденсаторы.
- •3.3.3.Энергия взаимодействия точечных зарядов. Энергия заряженных проводников.
- •Электростатика Примеры решения задач
- •Зачетная работа
- •Тема 4.3. Законы постоянного тока
- •1.4.3. Электрический ток. Необходимые условия существования тока.
- •2.4.3. Закон Ома для участка цепи. Дифференциальная форма закона Ома.
- •3.4.3. Источники тока. Сторонние силы. Эдс источника тока.
- •4.4.3. Работа и мощность постоянного тока. Закон Джоуля - Ленца.
- •5.4.3. Закон Ома для неоднородного участка цепи.
- •6.4.3. Разветвленные цепи. Правила Кирхгофа.
- •7.4.3. Измерительные мосты постоянного тока.
- •8.4.3. Мощность тока во внешней цепи. Кпд источника тока.
- •Законы постоянного тока Примеры решения задач
- •Тема 5.3. Магнитное поле постонного тока
- •1.5.3. Магнитное взаимодействие проводников с током. Магнитное поле.
- •2.5.3. Напряженность и индукция магнитного поля.
- •3.5.3. Закон Био-Савара-Лапласа для элемента тока. Расчет магнитных полей.
- •5.3.3.Поток вектора магнитной индукции. Теорема Гаусса для вектора .
- •6.5.3. Силы Ампера и Лоренца.
- •7.5.3. Контур с током в магнитном поле.
- •8.5.3. Работа по перемещению проводника и контура с током в магнитном поле.
- •Тема 6.3. Магнитные свойства электрона и электронной оболочки атома
- •2.6.3. Спин электрона. Спиновый магнитный момент.
- •3.6.3. Структура электронных оболочек атомов.
- •4.6.3. Гипотеза Ампера. Объемные и поверхностные токи.
- •Тема 7.3. Магнитные свойства вещества. Магнетики.
- •1.7.3. Намагниченность. Магнитное поле в веществе.
- •3.7.3. Основные типы магнетиков. Природа диа- и парамагнетизма.
- •4.7.3. Ферромагнетики и их свойства.
- •5.7.3. Природа ферромагнетизма.
- •6.7.3. Магнитные цепи.
- •Примеры решения задач
- •Тема 8.3. Электромагнитная индукция
- •1.8.3. Явление электромагнитной индукции. Закон Фарадея.
- •2.8.3. Взаимная индукция. Индуктивность.
- •3.8.3. Явление самоиндукции. Индуктивность.
- •4.8.3. Вихревые токи. Скин – эффект.
- •5.8.3. Токи при замыкании и размыкании цепи.
- •6.8.3. Энергия магнитного поля.
- •Тема 9.3. Уравнения максвелла
- •1.9.3. Вихревое электрическое поле. Первое уравнение Максвелла в интегральной форме.
- •Ток смещения. Интегральная форма второго уравнения Максвелла.
- •3.9.3. Полная система уравнений Максвелла для электромагнитного поля.
- •Тема 10.3. Электромагнитные волны
- •1.10.3. Образование свободной электромагнитной волны.
- •2.10.3. Экспериментальное исследование электромагнитных волн.
- •3.10.3. Энергия электромагнитной волны. Вектор Умова - Пойнтинга.
- •Тема 11.3. Гармонический осциллятор (электрические системы)
- •1.11.3. Свободные электромагнитные колебания. Формула Томсона.
- •2.11.3. Свободные затухающие колебания.
- •3.11.3. Вынужденные колебания.
- •4.11.3. Переменный электрический ток. Действующее значение переменного тока и напряжения.
- •5.11.3. Последовательное соединение. Резонанс напряжений.
- •6.11.3. Параллельное соединение. Резонанс токов.
- •7.11.3. Символический метод.
- •Тема 12.3. Основы классической электронной теории проводимости металлов
- •1.12.3. Экспериментальное доказательство электронной природы тока в металлах. Эффект Холла и его применение.
- •2.12.3. Классическая теория электронного газа в твердом теле.
- •3.12.3. Закон Видемана – Франца.
- •4.12.3. Трудности классической теории.
- •Тема 13.3. Контактные явления в металлах
- •1.13.3. Работа выхода электронов из металла. Виды электронной эмиссии.
- •2.13.3. Контакт двух металлов. Контактная разность потенциалов.
- •3.13.3.Термоэлектрические явления.
- •Тема 14.3. Элементы зонной теории твердых тел
- •Дискретность энергетических уровней в атоме.
- •2.14.3. Электронная проводимость металлов по квантовой теории.
- •Расщепление энергетических уровней и образование зон. Электрические свойства металлов, диэлектриков и полупроводников.
- •4.14.3. Собственная проводимость полупроводников.
- •5.14.3. Примесная проводимость полупроводников.
- •6.14.3. Контакт двух полупроводников с различным типом проводимости.
Введение
Учение об электричестве включает три группы вопросов. К первой группе относятся основные понятия и общие принципы, управляющие электрическими и магнитными явлениями; ко второй – электрические и магнитные свойства вещества; к третьей – техническое и практическое применение электрических и магнитных явлений.
В курсе физики мы более подробно рассмотрим вопросы первой и второй группы, так как практическое применение электричества рассматривается спецпредметами.
Нужно иметь в виду, что основные понятия и принципы, установлены путем обобщения опытных фактов, и имеют ограниченную область применения.
Опыт показывает, что между заряженными телами и проводниками, по которым текут токи, действуют силы называемые электромагнитными силами.
Относительно этих сил выдвигались две теории: теория дальнодействия (без участия каких бы ни было промежуточных посредников) и теория близкодействия, которая исходит из представления, что любое взаимодействие передается с помощью материального носителя.
Основная идея теории дальнодействия была заимствована из закона всемирного тяготения. Закон всемирного тяготения, сформулированный Ньютоном, позволил определить силу всемирного тяготения, но не объяснил природу взаимодействия. По мнению ученых, силы тяготения, электрические и магнитные силы не нуждаются в объяснении, а являются неотъемлемым, врожденным свойством материи и задача заключается только в том, чтобы установить закон этого взаимодействия.
Благодаря трудам Лапласа, Ампера, Пуассона, Гаусса, Остроградского теория дальнодействия достигла высокой степени совершенства. Теория отличалась формальной простотой и ясностью исходных математических положений, математической строгостью и стройностью. Она совершенно не вводила гипотетических представлений о физической природе сил, а основывалась только на опытных прочно установленных фактах и их обобщениях.
Фарадей считал, что действие на расстоянии физически бессодержательно и действие одного тела на другое может осуществляться либо при непосредственном соприкосновении, либо передаваться через промежуточную среду. Эту среду Фарадей назвал полем. В своих рассуждениях Фарадей использовал в основном качественную сторону явлений.
Современники с трудом воспринимали идеи Фарадея и даже отвергали их.
Максвелл, в совершенстве владея математическим методом исследования, облек идеи Фарадея в математическую форму. Он не только обобщил известные опытные факты, но и предсказал новые. Ему удалось сформулировать систему уравнений, в которой в сжатой и точной форме содержатся все количественные законы электромагнитного поля.
Уравнения Максвелла являются результатом обобщения опытных фактов. Их доказательство надо искать в сопоставлении с опытом выводимых из них следствий.
Одним из таких доказательств может служить открытие Герцем существования электромагнитных волн, предсказанное теорией Максвелла. Свойства электромагнитных волн оказались именно таким, какие предсказывались теорией Максвелла.
В электродинамике уравнения Максвелла играют ту же роль, что и законы Ньютона в динамике.