Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Учебное пособие начертательная геометрия.doc
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
13.38 Mб
Скачать

6.3 Способ вращения вокруг проецирующей прямой

Этот способ является частным случаем способа плоскопараллельного перемещения, когда точка фигуры описывает дугу окружности, плоскость которой также параллельна плоскости проекций.

Графический алгоритм построения точек в способе вращения вокруг проецирующей прямой отличается лишь тем, что здесь траектория движения точки имеет вид окружности, а не произвольной прямой, как в плоскопараллельном проецировании.

Способ вращения вокруг проецирующей прямой более удобен при решении некоторых задач. Найдем с применением этого метода длину отрезка AB. Отрезок AB спроецируется на П2 в натуральную величину, если он будет ей параллелен. Для этого повернем его вокруг оси, проходящей через точку B до состояния параллельности П2, при этом точка A опишет дугу в горизонтальной плоскости.

Алгоритм графических построений:

1.Проведем ось вращения i через точку B. Ось i перпендикулярна П2;

2.Повернем отрезок AB до состояния параллельности оси проекций П1П2. Где A1'B1' - новая проекция AB;

3.Проводим вспомогательную линию на П2. Эта линия символизирует горизонтальную плоскость, в которой поворачивалась точка A;

4.Проводим линию связи и находим новую проекцию A2'B2' отрезка AB на П2;

A2'B2' - натуральная величина отрезка AB.

6.4 Способ вращения вокруг линии уровня

Этот способ применяется в основном для решения задачи преобразования плоскости общего положения в плоскость уровня. Суть способа заключается в том, что плоскость общего положения, поворачивается вокруг прямой уровня до состояния, параллельного горизонтальной плоскости проекций П1 либо фронтальной П2.

Рассмотрим поворот точки А вокруг горизонтали a до уровня горизонтали. Точка А движется по дуге окружности радиуса R с центром в точке O, принадлежащей горизонтали a. Радиус R является гипотенузой прямоугольного треугольника А0А1O, где один катет А1О - горизонтальная проекция радиуса вращения, другой - равен Dz - расстояние между точкой A и прямой a по вертикали. А' - новое положение точки А.

Алгоритм графических построений:

1.Через А1 проводим горизонтальную проекцию дуги по которой поворачивается точка А. Это будет прямая, перпендикулярная прямой a1;

На пересечении прямой a и проекции дуги отмечаем точку O1;

2. Строим прямоугольный треугольник A1A0O1. Попутно мы решили задачу нахождения расстояния между прямой и точкой. Отрезок A0O1 - расстояние от точки A до прямой a;

3. Обратите внимание, на то, что построения, выполняемые на верхнем демонстрационном чертеже выполняются в вертикальной плоскости, а на ортогональном чертеже мы делаем те же построения, только в горизонтальной плоскости. На результат построений такой прием не влияет;

Проводим дугу A0A1' с центром в точке O1. А1' - новая проекция точки А;

4. Подняв от A1' линию проекционной связи до пересечения с a2 находим A2'.

Лекция №2

1.2. Многогранные поверхности

5.1 Изображение многогранников на ортогональном чертеже

Многогранники – замкнутые пространственные фигуры, ограниченные плоскими многоугольниками. Вершины и стороны многогранников являются вершинами и ребрами многогранников. Они образуют пространственную сетку. Если вершины и ребра многогранника находятся по одну сторону плоскости любой из его граней, то многогранник называют выпуклым, все его грани – выпуклые.

Из всего многообразия многогранников наибольший практический интерес представляют призмы, пирамиды, правильные многогранники и их разновидности.

Многогранник, две грани которого n-угольники в параллельных плоскостях, а остальные n-граней - параллелограммы, называется n-угольной призмой. Многогранники являются основаниями призмы, а параллелограммы – боковыми гранями призмы.

Многогранник, у которого одна из граней – произвольный многоугольник, а остальные грани – треугольники, имеющие общую вершину, называются пирамидой. Грань–многоугольник называют основанием призмы, а треугольники – боковыми гранями пирамиды. Общая вершина треугольников называется особой вершиной пирамиды (обычно, просто вершиной).

Если пирамиду отсечь плоскостью параллельной основанию, то получим усеченную пирамиду.

Многогранник называется метрически правильным, если все его грани являются правильными многоугольниками. К ним относятся куб, тетраэдр, октаэдр, икосаэдр, додекаэдр.

Под изображением многогранников на чертеже будем понимать изображение ограничивающей его многогранной поверхности, т.е. изображение совокупности составляющих ее многогранников. Графически простую многогранную поверхность удобно задавать проекциями ее сетки.

На рисунке многогранник АВСDА'В'С'D' задан проекциями его ребер и вершин (сетки), где А1А'1 | | В1В'1 | | С1С'1 | | D1D'1 и А2А'2 | | В2В'2 | | С2С'2 | | D2D'2. Значит ребра многогранника параллельны. Параллельны соответственные стороны многоугольника АВСD и А'В'С'D'. Грани АВВА, ВССВ, СDDС и ADDA являются параллелограммами. Отсюда следует, что на чертеже задана призма. Четырехугольник ABCD плоский, т. к. его диагонали пересекаются в точке 1.

На этом же чертеже показано построение горизонтальной проекции K1 точки K по заданной ее фронтальной проекции K2 из условия принадлежности точки K грани BB'C'C. Горизонтальная проекция точки K построена с помощью вспомогательной прямой 23, проведенной через точку K в плоскости BB'C'C.

Такой чертеж многогранной поверхности АВСDА'В'С'D', когда можно построить проекцию любой точки, принадлежащей многогранной поверхности называется полным. На этом чертеже можно решать любые позиционные и метрические задачи.