
- •1.1. Методы проецирования
- •Центральное проецирование
- •Параллельное проецирование
- •Ортогональное проецирование
- •1.2. Точка на эпюре монжа.
- •1.2.1. Эпюр Монжа или ортогональные проекции.
- •1.2.2. Двухпроекционный ортогональный чертёж точки
- •1.2.3 Трехпроекционный ортогональный чертёж точки
- •1.2.4.Ортогональные проекции точки общего положения
- •1.2.5. Ортогональные проекции точки частного положения
- •2.2.5 Определение видимости конкурирующих точек
- •1.3. Плоскость на эпюре монжа.
- •1.3.2 Ортогональный чертеж плоскости частного положения
- •1.4. Первая позиционная задача
- •1.4.1 Точка на отрезке прямой. Деление отрезка в заданном отношении
- •1.4.2 Прямая и точка в плоскости
- •1.4.3. Прямые общего положения в плоскости
- •1.4.4. Прямая, параллельная плоскости
- •1.4.5 Параллельные плоскости
- •1.4.5 Пересечение прямой общего положения с проецирующей плоскостью
- •1.4.6. Пересечение прямой общего положения с плоскостью общего положения
- •1.4.7 Пересечение плоскостей общего и частного положения
- •1.4.8. Пересечение двух плоскостей общего положения
- •1.5. Способы преобразования проекций
- •1.5.1. Способ замены плоскостей проекций.
- •1.5.2. Способ плоскопараллельного перемещения
- •6.3 Способ вращения вокруг проецирующей прямой
- •6.4 Способ вращения вокруг линии уровня
- •1.2. Многогранные поверхности
- •5.1 Изображение многогранников на ортогональном чертеже
- •2.2. Вторая позиционная задача
- •2.2.1. Взаимное пересечение поверхностей
- •2.3. Развертки
- •2.3.1. Порядок построения разверток.
- •2.3.2. Метод триангуляции.
- •2.3.3 Нормальный способ построения развертки.
- •3.1. Кривые поверхности.
- •3.1. Линейчатые поверхности
- •3.1.2. Линейчатые поверхности с одной направляющей
- •3.1.3. Коническая поверхность
- •3.1.4 Цилиндрическая поверхность
- •3.1.5. Линейчатая поверхность с плоскостью параллелизма
- •3.1.6. Винтовые поверхности
- •3.1.7. Поверхности вращения
- •3.1.8. Торовые поверхности
- •3.1.9. Поверхности вращения 2-го порядка
- •3.1.10. Поверхности с криволинейной образующей
- •3.1.10 Поверхности параллельного переноса
- •3.2. Пересечение кривой поверхности плоскостью
- •3.2.1. Пересечение поверхности плоскостью
- •3.2.2.Конические сечения.
- •3.3. Взаимное пересечение поверхностей
- •3.3.1.Метод вспомогательных секущих плоскостей.
- •3.3.2. Метод вспомогательных секущих сфер.
- •3.3.3. Частные случаи пересечения поверхностей второго порядка
- •3.4. Способы построения Аксонометрические проекции
- •3.4.1. Стандартные аксонометрические проекции
- •3.4.2. Окружность в аксонометрии
1.4.6. Пересечение прямой общего положения с плоскостью общего положения
В предыдущих пунктах мы рассмотрели случаи пересечения прямой и плоскости при частном расположении пересекающихся фигур. Теперь обратимся к решению одной из главных позиционных задач: нахождение точки пересечения прямой общего положения с плоскостью общего положения.
Построим точку К - точку пересечения прямой общего положения а с плоскостью общего положения b, заданную тремя точками А, В, С.
Алгоритм построения точки пересечения:
Например на П1 проведем через заданную прямую а1 вспомогательную горизонтально проецирующую плоскость s1: а s и s П1.
Построим m1 - линию пересечения вспомогательной плоскости s1 с заданной плоскостью b1. Отметим точки 11 и 21 - точки пересечения прямой m1 и отрезков А1В1 и В1С1 соответственно.
Построим фронтальную проекцию прямой m, учитывая принадлежность точек 1 и 2 сторонам треугольника АВС.
Находим точку К2 - точку пересечения прямых m2 и а2: К2=m2 а2.
По линии связи находим первую проекцию точки К - точку К1.
Определяем видимость прямой а с помощью метода конкурирующих точек. На П2, правая часть прямой а2 (относительно точки К2) - видима, а левая часть прямой а2 - невидима. На П1, левая часть прямой а1 (относительно точки К1) - невидима, а правая часть прямой а1 - видима.
1.4.7 Пересечение плоскостей общего и частного положения
Пусть нам дана плоскость частного положения a П1 и плоскость общего положения, заданная треугольником АВС. Требуется построить линию пересечения плоскости a с плоскостью АВС.
Рассмотрим сначала пространственную модель, на которой даны плоскость a, плоскость АВС и плоскость проекций П1. Спроецируем плоскости a и ABC на П1. Плоскость общего положения АВС проецируется на плоскость П1 в виде треугольника А1В1С1, а плоскость частного положения a - в виде прямой a1. На плоскости П1 прямая a1 и АВС пересекаются в точках K1 (K1 принадлежит А1В1) и N1 (N1 принадлежит А1C1). Если через точки K1 и N1 провести проецирующие прямые до пересечения с плоскостью АВС, то получатся две точки K (K принадлежит АВ) и N (N принадлежит АC). Соединив точки K и N, мы получим прямую KN. Прямая KN - линия пересечения плоскости a с плоскостью АВС.
Теперь обратимся к комплексному чертежу. K1 принадлежит a1 , следовательно K принадлежит a. K1 принадлежит A1B1, а K2 принадлежит A2B2, следовательно K принадлежит AB. Из этих утверждений следует, что K - точка пересечения прямой АВ с плоскостью a. Возьмем точку N и проделаем те же действия. Теперь рассмотрим ABС (заданный пересекающимися прямыми АВ, АС). КN - линия пересечения плоскости ABС с плоскостью a.
1.4.8. Пересечение двух плоскостей общего положения
Теперь рассмотрим пример пересечения двух плоскостей общего положения. Для построения линии пересечения двух плоскостей a и b необходимо найти две точки, N и M каждая из которых принадлежит обеим плоскостям. Для нахождения точек N и M можно воспользоваться следующим алгоритмом:
1. Взять две дополнительные плоскости частного положения 1ЧП и 2ЧП;
2. Определить линии пересечения плоскостей частного положения 1ЧП и 2ЧП с плоскостями общего положения a и b с помощью метода, приведенного в предыдущем пункте;
3. Определить точки N и M пересечения полученных линий.
Выполним построения:
1. Возьмем плоскости общего положения a и b. Плоскость a задана пересекающимися прямыми a и b. Плоскость b задана параллельными прямыми c и d.
2. Возьмем плоскости частного положения 1ЧП и 2ЧП перпендикулярные к П1.
3. Найдем точки пересечения 1ЧП и 2ЧП с прямыми, задающими плоскости a и b. Опустим линии связи и получим проекции линий пересечения плоскостей на П1.
4. Теперь найдем две точки N1 и M1 пересечения полученных линий (синие на чертеже). Обратите внимание, что нас интересуют точки пересечения тех линий, которые получены пересечением одной плоскости частного положения с двумя общего. То есть, например, точка N при таком построении является точкой пересечения линий пересечения 1ЧП с a и b и соответственно принадлежит и a и b.
5. Поднимаем линии связи и получаем вторые проекции точек M и N.
6. Точки M и N принадлежат одновременно a и b, поэтому MN - линия пересечения a и b.