
- •1.1. Методы проецирования
- •Центральное проецирование
- •Параллельное проецирование
- •Ортогональное проецирование
- •1.2. Точка на эпюре монжа.
- •1.2.1. Эпюр Монжа или ортогональные проекции.
- •1.2.2. Двухпроекционный ортогональный чертёж точки
- •1.2.3 Трехпроекционный ортогональный чертёж точки
- •1.2.4.Ортогональные проекции точки общего положения
- •1.2.5. Ортогональные проекции точки частного положения
- •2.2.5 Определение видимости конкурирующих точек
- •1.3. Плоскость на эпюре монжа.
- •1.3.2 Ортогональный чертеж плоскости частного положения
- •1.4. Первая позиционная задача
- •1.4.1 Точка на отрезке прямой. Деление отрезка в заданном отношении
- •1.4.2 Прямая и точка в плоскости
- •1.4.3. Прямые общего положения в плоскости
- •1.4.4. Прямая, параллельная плоскости
- •1.4.5 Параллельные плоскости
- •1.4.5 Пересечение прямой общего положения с проецирующей плоскостью
- •1.4.6. Пересечение прямой общего положения с плоскостью общего положения
- •1.4.7 Пересечение плоскостей общего и частного положения
- •1.4.8. Пересечение двух плоскостей общего положения
- •1.5. Способы преобразования проекций
- •1.5.1. Способ замены плоскостей проекций.
- •1.5.2. Способ плоскопараллельного перемещения
- •6.3 Способ вращения вокруг проецирующей прямой
- •6.4 Способ вращения вокруг линии уровня
- •1.2. Многогранные поверхности
- •5.1 Изображение многогранников на ортогональном чертеже
- •2.2. Вторая позиционная задача
- •2.2.1. Взаимное пересечение поверхностей
- •2.3. Развертки
- •2.3.1. Порядок построения разверток.
- •2.3.2. Метод триангуляции.
- •2.3.3 Нормальный способ построения развертки.
- •3.1. Кривые поверхности.
- •3.1. Линейчатые поверхности
- •3.1.2. Линейчатые поверхности с одной направляющей
- •3.1.3. Коническая поверхность
- •3.1.4 Цилиндрическая поверхность
- •3.1.5. Линейчатая поверхность с плоскостью параллелизма
- •3.1.6. Винтовые поверхности
- •3.1.7. Поверхности вращения
- •3.1.8. Торовые поверхности
- •3.1.9. Поверхности вращения 2-го порядка
- •3.1.10. Поверхности с криволинейной образующей
- •3.1.10 Поверхности параллельного переноса
- •3.2. Пересечение кривой поверхности плоскостью
- •3.2.1. Пересечение поверхности плоскостью
- •3.2.2.Конические сечения.
- •3.3. Взаимное пересечение поверхностей
- •3.3.1.Метод вспомогательных секущих плоскостей.
- •3.3.2. Метод вспомогательных секущих сфер.
- •3.3.3. Частные случаи пересечения поверхностей второго порядка
- •3.4. Способы построения Аксонометрические проекции
- •3.4.1. Стандартные аксонометрические проекции
- •3.4.2. Окружность в аксонометрии
1.4. Первая позиционная задача
Под позиционными задачами будем понимать задачи по определению общих элементов геометрических фигур. К ним относятся задачи на принадлежность и задачи на пересечение геометрических фигур.
Первая позиционная задача ( на принадлежность) - задача на построение проекций: точек на линии или поверхности, линий на поверхности, линий и поверхностей, проходящих через заданные точки и линии.
В этом разделе будут рассмотрены методы решения задач на примере прямых линий и плоскостей. Параллельные прямые будем рассматривать как пересекающиеся в бесконечно удаленной (несобственной точке).
Прямая, параллельная плоскости, пересекает ее в бесконечно удаленной (несобственной) точки. Параллельные плоскости пересекаются по несобственной (бесконечно-удаленной) прямой.
1.4.1 Точка на отрезке прямой. Деление отрезка в заданном отношении
В пространстве точка и прямая относительно друг друга могут занимать два положения: точка лежит на прямой и точка не лежит на прямой.
Если точка С лежит на прямой АВ, то, на основании свойства проекций при параллельном проецировании, её проекции лежат на одноимённых проекциях этой прямой и на одной линии связи.
При рассмотрении свойств параллельного проецирования установлено, что отношение отрезков прямой равно отношению их проекций. Для того чтобы разделить отрезок прямой в заданном отношении, достаточно разделить в том же отношении проекции отрезка.
Пусть требуется отрезок АВ разделить точкой С в заданном отношении АС : СВ = 2:1. Обратимся к ортогональному чертежу отрезка АВ.
Например, из первой проекции В1 точки В проведём вспомогательную прямую под произвольным углом. На этой прямой отложим 3 равных отрезка любой длины. Соединим точку А1 и точку 3. Через точку 1 проведём прямую || А13. При пересечении этой прямой с отрезком А1В1 получим искомую точку С1, которая делит первую проекцию отрезка АВ в заданном отношении: А1С1 : С1В1 = 2:1. Так как по свойству проекций точки С1 и С2 должны лежать на одной линии связи, то теперь для того чтобы найти вторую проекцию С2 точки С достаточно провести линию связи и найти точку её пересечения с отрезком А2В2. Отметим точку С2, которая удовлетворяет условию А2С2 : С2В2 = 2:1.
Итак, мы построили на ортогональном чертеже отрезок АВ и отметили точку С, которая делит отрезок АВ в заданном отношении АС : СВ = 2:1.
1.4.2 Прямая и точка в плоскости
В пространстве прямая может либо принадлежать плоскости, либо не принадлежать плоскости. Это утверждение справедливо и для точки. Прямая принадлежит плоскости, если она проходит:
1. Через две точки, принадлежащие плоскости;
2. Через точку плоскости параллельно любой прямой этой плоскости.
Точка принадлежит плоскости, если она расположена на прямой (кривой), лежащей в данной плоскости.
1.4.3. Прямые общего положения в плоскости
Пусть нам дан ортогональный чертёж плоскости a - общего положения, заданной двумя пересекающимися прямыми а и b. Чтобы построить прямую, принадлежащую данной плоскости, необходимо выполнить одно из вышеперечисленных условий. На прямых a и b возьмём две точки А и В и проведём прямую f через эти точки. Прямая f принадлежит плоскости a, т. к. она проходит через две точки, принадлежащие данной плоскости.
Если мы отметим на прямой f точки С и D, то они так же будут принадлежать плоскости a, т. к. они принадлежат прямой, лежащей в данной плоскости.