
- •1.1. Методы проецирования
- •Центральное проецирование
- •Параллельное проецирование
- •Ортогональное проецирование
- •1.2. Точка на эпюре монжа.
- •1.2.1. Эпюр Монжа или ортогональные проекции.
- •1.2.2. Двухпроекционный ортогональный чертёж точки
- •1.2.3 Трехпроекционный ортогональный чертёж точки
- •1.2.4.Ортогональные проекции точки общего положения
- •1.2.5. Ортогональные проекции точки частного положения
- •2.2.5 Определение видимости конкурирующих точек
- •1.3. Плоскость на эпюре монжа.
- •1.3.2 Ортогональный чертеж плоскости частного положения
- •1.4. Первая позиционная задача
- •1.4.1 Точка на отрезке прямой. Деление отрезка в заданном отношении
- •1.4.2 Прямая и точка в плоскости
- •1.4.3. Прямые общего положения в плоскости
- •1.4.4. Прямая, параллельная плоскости
- •1.4.5 Параллельные плоскости
- •1.4.5 Пересечение прямой общего положения с проецирующей плоскостью
- •1.4.6. Пересечение прямой общего положения с плоскостью общего положения
- •1.4.7 Пересечение плоскостей общего и частного положения
- •1.4.8. Пересечение двух плоскостей общего положения
- •1.5. Способы преобразования проекций
- •1.5.1. Способ замены плоскостей проекций.
- •1.5.2. Способ плоскопараллельного перемещения
- •6.3 Способ вращения вокруг проецирующей прямой
- •6.4 Способ вращения вокруг линии уровня
- •1.2. Многогранные поверхности
- •5.1 Изображение многогранников на ортогональном чертеже
- •2.2. Вторая позиционная задача
- •2.2.1. Взаимное пересечение поверхностей
- •2.3. Развертки
- •2.3.1. Порядок построения разверток.
- •2.3.2. Метод триангуляции.
- •2.3.3 Нормальный способ построения развертки.
- •3.1. Кривые поверхности.
- •3.1. Линейчатые поверхности
- •3.1.2. Линейчатые поверхности с одной направляющей
- •3.1.3. Коническая поверхность
- •3.1.4 Цилиндрическая поверхность
- •3.1.5. Линейчатая поверхность с плоскостью параллелизма
- •3.1.6. Винтовые поверхности
- •3.1.7. Поверхности вращения
- •3.1.8. Торовые поверхности
- •3.1.9. Поверхности вращения 2-го порядка
- •3.1.10. Поверхности с криволинейной образующей
- •3.1.10 Поверхности параллельного переноса
- •3.2. Пересечение кривой поверхности плоскостью
- •3.2.1. Пересечение поверхности плоскостью
- •3.2.2.Конические сечения.
- •3.3. Взаимное пересечение поверхностей
- •3.3.1.Метод вспомогательных секущих плоскостей.
- •3.3.2. Метод вспомогательных секущих сфер.
- •3.3.3. Частные случаи пересечения поверхностей второго порядка
- •3.4. Способы построения Аксонометрические проекции
- •3.4.1. Стандартные аксонометрические проекции
- •3.4.2. Окружность в аксонометрии
2.2.5 Определение видимости конкурирующих точек
Точки, у которых проекции на П1 совпадают, называют конкурирующими по отношению к плоскости П1, а точки, у которых проекции на П2 совпадают, называют конкурирующими по отношению к плоскости П2.
Точки К и L конкурирующие по отношению к плоскости П1, так как на плоскости П1 точки К и L проецируются в одну точку: К1 = L1.
Точка К выше точки L, т.к. К2 выше точки L2, потому К1 на П1 видима.
Точки N и М конкурирующие по отношению к плоскости П2, так как на плоскости П2 точки M и N проецируются в одну точку: М2 = N2.
Точка N ближе к наблюдателю, чем точка М, т.к. координата у точки N больше, чем у точки М, а потому точка N закрывает точку М, а потому N1 на П2 является видимой.
Анализ видимости на чертеже с помощью конкурирующих точек – важная задача, с которой далее мы встретимся неоднократно.
1.3. Плоскость на эпюре монжа.
1.3.1 Ортогональный чертеж плоскости общего положения
В отличие от линии, плоскость на комплексном чертеже не может быть задана своими проекциями. Плоскость считается беспредельной, неограниченной, а поэтому проекции её точек на P1 и P2 займут всё поле чертежа.
Плоскость может быть задана:
1. тремя точками, не лежащими на одной прямой;
2. прямой и точкой, ей не принадлежащей;
3. двумя пересекающимися прямыми;
4. двумя параллельными прямыми.
Плоскость относительно плоскостей проекций может занимать общее и частное положение:
Плоскость общего положения - плоскость не перпендикулярная ни к одной из плоскостей проекций. Рассмотрим пример комплексного чертежа плоскости общего положения, заданной тремя точками, не лежащими на одной прямой: А, В, С, т. е. треугольник АВС. Спроецируем точки А, В, С на все три плоскости проекций, и получим ортогональные проекции плоскости, заданной треугольником АВС. Каждая проекция плоскости АВС, есть треугольник.
1.3.2 Ортогональный чертеж плоскости частного положения
Плоскость частного положения - плоскость проходящая через проецирующие прямые, т.е. перпендикулярная к одной или одновременно к двум основным плоскостям проекций. Если плоскость перпендикулярна только к одной плоскости проекций, то она называется проецирующей плоскостью. Существует три вида проецирующих плоскостей:
1. Горизонтально-проецирующая плоскость - перпендикулярна к П1. И поэтому проецируется на нее как прямая.
2. Фронтально-проецирующая плоскость - перпендикулярна к П2. И поэтому проецируется на нее как прямая.
3. Профильно-проецирующая плоскость - перпендикулярна к П3. И поэтому проецируется на нее как прямая. На обычном ортогональном чертеже, когда плоскость П3 не используется, профильно-проецирующая плоскость выглядит как плоскость общего положения.
Если плоскость перпендикулярна к двум плоскостям проекций, то она называется плоскостью уровня. Следовательно, плоскость уровня всегда параллельна одной из плоскостей проекций. Существует три вида плоскостей уровня:
1. Горизонтальная плоскость уровня - || П1.
2. Фронтальная плоскость уровня - || П2.
3. Профильная плоскость уровня - || П3.