
- •1.1. Методы проецирования
- •Центральное проецирование
- •Параллельное проецирование
- •Ортогональное проецирование
- •1.2. Точка на эпюре монжа.
- •1.2.1. Эпюр Монжа или ортогональные проекции.
- •1.2.2. Двухпроекционный ортогональный чертёж точки
- •1.2.3 Трехпроекционный ортогональный чертёж точки
- •1.2.4.Ортогональные проекции точки общего положения
- •1.2.5. Ортогональные проекции точки частного положения
- •2.2.5 Определение видимости конкурирующих точек
- •1.3. Плоскость на эпюре монжа.
- •1.3.2 Ортогональный чертеж плоскости частного положения
- •1.4. Первая позиционная задача
- •1.4.1 Точка на отрезке прямой. Деление отрезка в заданном отношении
- •1.4.2 Прямая и точка в плоскости
- •1.4.3. Прямые общего положения в плоскости
- •1.4.4. Прямая, параллельная плоскости
- •1.4.5 Параллельные плоскости
- •1.4.5 Пересечение прямой общего положения с проецирующей плоскостью
- •1.4.6. Пересечение прямой общего положения с плоскостью общего положения
- •1.4.7 Пересечение плоскостей общего и частного положения
- •1.4.8. Пересечение двух плоскостей общего положения
- •1.5. Способы преобразования проекций
- •1.5.1. Способ замены плоскостей проекций.
- •1.5.2. Способ плоскопараллельного перемещения
- •6.3 Способ вращения вокруг проецирующей прямой
- •6.4 Способ вращения вокруг линии уровня
- •1.2. Многогранные поверхности
- •5.1 Изображение многогранников на ортогональном чертеже
- •2.2. Вторая позиционная задача
- •2.2.1. Взаимное пересечение поверхностей
- •2.3. Развертки
- •2.3.1. Порядок построения разверток.
- •2.3.2. Метод триангуляции.
- •2.3.3 Нормальный способ построения развертки.
- •3.1. Кривые поверхности.
- •3.1. Линейчатые поверхности
- •3.1.2. Линейчатые поверхности с одной направляющей
- •3.1.3. Коническая поверхность
- •3.1.4 Цилиндрическая поверхность
- •3.1.5. Линейчатая поверхность с плоскостью параллелизма
- •3.1.6. Винтовые поверхности
- •3.1.7. Поверхности вращения
- •3.1.8. Торовые поверхности
- •3.1.9. Поверхности вращения 2-го порядка
- •3.1.10. Поверхности с криволинейной образующей
- •3.1.10 Поверхности параллельного переноса
- •3.2. Пересечение кривой поверхности плоскостью
- •3.2.1. Пересечение поверхности плоскостью
- •3.2.2.Конические сечения.
- •3.3. Взаимное пересечение поверхностей
- •3.3.1.Метод вспомогательных секущих плоскостей.
- •3.3.2. Метод вспомогательных секущих сфер.
- •3.3.3. Частные случаи пересечения поверхностей второго порядка
- •3.4. Способы построения Аксонометрические проекции
- •3.4.1. Стандартные аксонометрические проекции
- •3.4.2. Окружность в аксонометрии
Ортогональное проецирование
Как уже было сказано выше ортогональное проецирование - это частный случай параллельного проецирования. При ортогональном проецировании проецирующие лучи перпендикулярны к плоскости проекций.
Аппарат такого проецирования состоит из одной плоскости проекций.
Чтобы получить ортогональную проекцию точки А, через неё надо провести проецирующий луч перпендикулярно к П1. Точка А1 называется ортогональной или прямоугольной проекцией точки А.
Чтобы получить ортогональную проекцию А1В1 отрезка АВ, на плоскость П1, необходимо через точки А и В провести проецирующие прямые, П1. При пересечении проецирующих прямых с плоскостью П1 получатся ортогональные проекции А1 и В1 точек А и В. Соединив ортогональные проекции А1 и В1 получим ортогональную проекцию А1В1 отрезка АВ.
Все свойства параллельного проецирования выполнимы и для ортогонального проецирования. Однако ортогональные проекции обладают ещё некоторыми свойствами.
Свойства ортогонального проецирования:
1. Длина отрезка равна длине его проекции, делённой на косинус угла наклона отрезка к плоскости проекций.
Возьмём прямую АВ и построим её ортогональную проекцию А1В1 на плоскость П1. Если провести прямую АС || А1В1, то из треугольника АВС следует, что |АС| : |АВ| = cos a или |АВ| = |А1В1| : cos a, т. к. |А1В1| = |АС|.
2. Кроме того, для ортогонального проецирования будет справедлива теорема о проецировании прямого угла:
Теорема:
Если хотя бы одна сторона прямого угла параллельна плоскости проекций, а вторая ей не перпендикулярна, то угол на эту плоскость проецируется в натуральную величину.
Нажмите на картинку для просмотра...
Доказательство:
Дан прямой угол АВС, у которого по условию прямая ВС АВ и ВС || плоскости проекций П1. По построению прямая ВС к проецирующему лучу ВВ1. Следовательно, прямая ВС к плоскости b (АВхВВ1), т. к. она к двум пересекающимся прямым , лежащим в этой плоскости. По условию прямая В1С1 || ВС, поэтому тоже к плоскости b, т. е. и прямой А1В1 этой плоскости. Следовательно, угол между прямыми А1В1 и В1С1 равен 90°, что и требовалось доказать.
Ортогональное проецирование обеспечивает простоту геометрических построений при определении ортогональных проекций точек, а так же возможность сохранять на проекциях форму и размеры проецируемой фигуры. Эти достоинства обеспечили ортогональному проецированию широкое применение в техническом черчении.
1.2. Точка на эпюре монжа.
1.2.1. Эпюр Монжа или ортогональные проекции.
Суть метода ортогональные (прямоугольных) проекций состоит в том, что оригинал ортогонально проецируют на 2 или 3 взаимно-ортогональные плоскости проекций, а затем совмещают их с плоскостью чертежа.
1.2.2. Двухпроекционный ортогональный чертёж точки
Построим пространственную модель, на которой изобразим две взаимно перпендикулярные плоскости П1 и П2. Линия пересечения плоскости П1 и плоскости П2 называется осью проекций и обозначается П2 / П1. Ось проекций совпадает с осью ОХ.
Выберем в пространстве точку А и опустим из неё на плоскости П1 и П2 перпендикуляры. Тогда мы получим две проекции точки А: А1 - первую или горизонтальную проекцию точки А и А2 - вторую или фронтальную проекцию точки А. Прямые А А1 и А А2 называются проецирующими прямыми или проецирующими лучами.
Перейдем от модели к чертежу. Для этого мысленно удалим точку А и повернём плоскость П1 вместе с отрезком А1 А0 вокруг оси проекций П2 / П1 до совмещения с плоскостью П2.
Полученный чертеж называется эпюром Монжа, ортогональным чертежом или комплексным чертежом.
Прямая А1 А0 совпадет с продолжением прямой А2 А0, и мы получаем прямую А1 А2, которая будет оси проекций П2 /П1. Эта прямая называется линией проекционной связи или просто линией связи.
Линия связи - это прямая, связывающая пары проекций одной и той же точки, и перпендикулярная оси проекций.
В итоге мы получили двухпроекционный комплексный чертёж точки А.