
- •1.1. Методы проецирования
- •Центральное проецирование
- •Параллельное проецирование
- •Ортогональное проецирование
- •1.2. Точка на эпюре монжа.
- •1.2.1. Эпюр Монжа или ортогональные проекции.
- •1.2.2. Двухпроекционный ортогональный чертёж точки
- •1.2.3 Трехпроекционный ортогональный чертёж точки
- •1.2.4.Ортогональные проекции точки общего положения
- •1.2.5. Ортогональные проекции точки частного положения
- •2.2.5 Определение видимости конкурирующих точек
- •1.3. Плоскость на эпюре монжа.
- •1.3.2 Ортогональный чертеж плоскости частного положения
- •1.4. Первая позиционная задача
- •1.4.1 Точка на отрезке прямой. Деление отрезка в заданном отношении
- •1.4.2 Прямая и точка в плоскости
- •1.4.3. Прямые общего положения в плоскости
- •1.4.4. Прямая, параллельная плоскости
- •1.4.5 Параллельные плоскости
- •1.4.5 Пересечение прямой общего положения с проецирующей плоскостью
- •1.4.6. Пересечение прямой общего положения с плоскостью общего положения
- •1.4.7 Пересечение плоскостей общего и частного положения
- •1.4.8. Пересечение двух плоскостей общего положения
- •1.5. Способы преобразования проекций
- •1.5.1. Способ замены плоскостей проекций.
- •1.5.2. Способ плоскопараллельного перемещения
- •6.3 Способ вращения вокруг проецирующей прямой
- •6.4 Способ вращения вокруг линии уровня
- •1.2. Многогранные поверхности
- •5.1 Изображение многогранников на ортогональном чертеже
- •2.2. Вторая позиционная задача
- •2.2.1. Взаимное пересечение поверхностей
- •2.3. Развертки
- •2.3.1. Порядок построения разверток.
- •2.3.2. Метод триангуляции.
- •2.3.3 Нормальный способ построения развертки.
- •3.1. Кривые поверхности.
- •3.1. Линейчатые поверхности
- •3.1.2. Линейчатые поверхности с одной направляющей
- •3.1.3. Коническая поверхность
- •3.1.4 Цилиндрическая поверхность
- •3.1.5. Линейчатая поверхность с плоскостью параллелизма
- •3.1.6. Винтовые поверхности
- •3.1.7. Поверхности вращения
- •3.1.8. Торовые поверхности
- •3.1.9. Поверхности вращения 2-го порядка
- •3.1.10. Поверхности с криволинейной образующей
- •3.1.10 Поверхности параллельного переноса
- •3.2. Пересечение кривой поверхности плоскостью
- •3.2.1. Пересечение поверхности плоскостью
- •3.2.2.Конические сечения.
- •3.3. Взаимное пересечение поверхностей
- •3.3.1.Метод вспомогательных секущих плоскостей.
- •3.3.2. Метод вспомогательных секущих сфер.
- •3.3.3. Частные случаи пересечения поверхностей второго порядка
- •3.4. Способы построения Аксонометрические проекции
- •3.4.1. Стандартные аксонометрические проекции
- •3.4.2. Окружность в аксонометрии
3.3.3. Частные случаи пересечения поверхностей второго порядка
Поверхностью второго порядка называется множество точек пространства, декартовы координаты, которых удовлетворяют алгебраическому уравнению второй степени.
Две поверхности второго порядка в общем случае пересекаются по пространственной линии четвертого порядка, которую называют биквадратной кривой.
В некоторых случаях биквадратная кривая распадается на две плоские кривые второго порядка, причем одна из них может быть мнимой.
Опуская доказательства, приведем некоторые теоремы и примеры, иллюстрирующие их применение.
Теорема 1. Если две поверхности второго порядка пересекаются по одной плоской кривой, то существует и другая плоская кривая, по которой они пересекаются.
Рассмотрим пример, к которому приложима теорема.
Фронтальные проекции q2 сферы Q и W2 эллиптического цилиндра W, имеющих общую окружность m(m2) с центром О(О2).
Плоскость σ, определяемая центром сферы С и осью i цилиндра, является плоскостью симметрии заданных поверхностей, и параллельна фронтальной плоскости проекций.
Общая окружность радиуса r – это одна из плоских кривых второго порядка распавшейся линии пересечения. Остается построить вторую кривую, плоскость α которой должна быть в условиях данного примера перпендикулярна плоскости симметрии σ, а следовательно и П2. Вторая линия пересечения (окружность) проецируется на П2 в виде отрезка прямой n2. Для ее построения следует воспользоваться точками А2 и В2, принадлежащими очеркам заданных поверхностей.
Теорема 2.(о двойном касании). Если две поверхности второго порядка имеют касание в двух точках А и В, то линия их пересечения распадается на две плоские кривые второго порядка, плоскость которых проходит через отрезок АВ, соединяющий точки касания.
Например, по двум окружностям m и n пересекается сфера S и эллиптический цилиндр Q. Точки касания и касательные плоскости обозначены соответственно через А, В, α, β. Окружности, на которые распалась линия пересечения поверхностей, расположены во фронтально- проецирующих плоскостях γ и δ.
Теорема 3. (теорема Г. Монжа). Если две поверхности второго порядка описаны около третьей или вписаны в нее, то линия их пересечения распадается на две плоские кривые второго порядка. Плоскости этих кривых проходят через прямую, соединяющую точки линий касания.
В соответствии с этой теоремой линия пересечения конуса Σ и цилиндра Q, описанных около сферы W, будут плоскими кривыми – эллипсами (расположенными в плоскостях a и b), фронтальные проекции которых изображаются прямыми А2В2 и С2Д2,
Теорема Монжа находит эффективное применение при конструировании трубопроводов.
Теорема 4. Если две поверхности второго порядка имеют общую плоскость симметрии, то линия их пересечения проецируется на эту плоскость в виде кривой второго порядка.
Плоскость симметрии определена осью симметрии цилиндра Q и центром сферы S. Плоскости принадлежат и симметричные сами себе точки A, B, C и D линий пересечения. Проекция же линий на фронтальную плоскость имеет форму параболы m2 и аналитически описывается формулой параболы.