
- •Методы принятия решений в п/ом
- •Глава з инструменты принятия решений
- •3.1. Процесс принятия решений
- •Модели для принятия решений
- •Теория принятия решений
- •Пример 2
- •Пример 4
- •Обобщение
- •Глава 4 прогнозирование
- •Что такое прогнозирование?
- •Типы прогнозов
- •Прогнозные приближения
- •Временные интервалы прогнозирования
- •Пример 5
- •Пример 6
- •Сезонные колебания данных
- •Пример 8
- •Методы регрессионного и корреляционного анализов
- •Продажи, у Заработная плата, х
- •Мониторинг и контроллинг прогноза
- •Роль компьютеров в прогнозировании
- •Обобщение
- •Глава 5 теория очередей
- •5.1. Характеристики линейных систем ожидания
- •Разнообразие моделей очередей
- •Пример 1
- •Пример 2
- •Формулы для модели очередей в – многоканальной, также называемой m/m/s
- •Формулы для модели очередей с – c постоянным временем обслуживания, называемой также m/d/1
- •Пример 4
- •Формулы и обозначения для модели очередей d – с ограниченным размером источника
- •Обобщение
Пример 6
Ниже показаны данные спроса на электрические генераторы компании за период 1986 – 1992 гг. Подберем прямую линию тренда к этим данным и определим прогноз спроса в 1993 г.
Год |
Продано электрических генераторов |
Год |
Продано электрических генераторов |
1986 |
74 |
1990 |
105 |
1987 |
79 |
1991 |
142 |
1988 |
80 |
1992 |
122 |
1989 |
90 |
|
|
Имея серию данных за период, мы должны минимизировать расчеты, трансформируя значения х (время) в простые числа. Так, в данном случае мы должны обозначить 1986 год как год 1, 1987-й – как год 2 и т. д.
Год |
Период времени |
Спрос на генераторы |
х2 |
ху |
1986 |
1 |
74 |
1 |
74 |
1987 |
2 |
79 |
4 |
158 |
1988 |
3 |
80 |
9 |
240 |
1989 |
4 |
90 |
16 |
360 |
1990 |
5 |
105 |
25 |
525 |
1991 |
6 |
142 |
36 |
852 |
1992 |
7 |
122 |
49 |
854 |
|
Σх = 28 |
Σу = 692 |
Σх2 = 140 |
Σху = 3,063 |
Следовательно, уравнение, полученное методом наименьших квадратов, имеет вид у = 56,70 + 10,54 х. Проектируя спрос в 1993 году, мы, в первую очередь, определяем 1993 год в нашей новой кодовой системе как х = 8:
(Продажи в 1993 г.) = 56,70 + 10,54(8) = 141,02, или 141 генератор.
Мы должны оценить спрос для 1994 года, подставив х = 9 в уравнение:
(Продажи в 1994 г.) = 56,70 + 10,54 (9) = 151,56, или 152 генератора.
Проверив валидность модели, мы наносим на диаграмму (рис. 4.5) бывший спрос и линию тренда. В этом случае мы можем быть осторожными и попытаться понять колебания в спросе в 1991 – 1992 гг.
Сезонные колебания данных
Прогнозирование временных серий, такое, как в примере 6, включает рассмотрение тренда данных в течение серий временных наблюдений. Иногда тем не менее повторяющиеся колебания в определенные сезоны года делают сезонное регулирование прогноза линии тренда необходимым. Спрос на уголь и топливо, например, обычно возрастает в течение холодных зимних месяцев. Спрос для клубов гольфа может быть наиболее высок летом. Анализ данных в месячном или квартальном разрезе делается легко с использованием статистических моделей, учитывающих сезонность. Сезонные индексы могут затем использоваться в ряде общих методов прогнозирования. Пример 7 иллюстрирует один способ расчета сезонных факторов по прошлым данным.
ПРИМЕР 7
Месячные продажи высококачественных телефонных аппаратов показаны ниже для 1991 – 1992 гг.
Месяц |
Продажи |
Средний спрос за 1991 – 1992 гг. |
Среднемесячный спрос * |
Сезонный индекс ** |
||
1991 г. |
1992 г. |
|||||
Январь |
80 |
100 |
90 |
94 |
.957 |
|
Февраль |
75 |
85 |
80 |
94 |
.851 |
|
Март |
80 |
90 |
85 |
94 |
.905 |
|
Апрель |
90 |
100 |
100 |
94 |
1.064 |
|
Май |
115 |
131 |
123 |
94 |
1.309 |
|
Июнь |
110 |
120 |
115 |
94 |
1.223 |
|
Июль |
100 |
110 |
105 |
94 |
1.117 |
|
Август |
90 |
110 |
100 |
94 |
1.064 |
|
Сентябрь |
85 |
95 |
90 |
94 |
.957 |
|
Октбярь |
75 |
85 |
80 |
94 |
.851 |
|
Ноябрь |
75 |
85 |
80 |
94 |
.851 |
|
Декабрь |
80 |
80 |
80 |
94 |
.851 |
Обший средний спрос = 1128.
* Среднемесячный спрос = 1,128 / 12 месяцев = 94.
** Сезонный индекс = Средний спрос за 1991 – 1992 гг. / Среднемесячный спрос
Используя эти сезонные индексы, в предположении, что годовой спрос на телефонные аппараты в 1993 году будет 1200 единиц, будем прогнозировать месячный спрос следующим образом:
Месяц |
Спрос |
Месяц |
Спрос |
Январь |
1200 / 12 х .957 = 96 |
Июль |
1200 / 12 x 1.117 = 112 |
Февраль |
1200 / 12 х .851 = 85 |
Август |
1200 / 12 x 1.064 = 106 |
Март |
1200 / 12 х .904 = 90 |
Сентябрь |
1200 / 12 х .957 = 96 |
Апрель |
1200 / 12 x 1.064 = 106 |
Октябрь |
1200 / 12 х .851= 85 |
Май |
1200 / 12 x 1.309 = 131 |
Ноябрь |
1200 / 12 х .851= 85 |
Июнь |
1200 / 12 x 1.223 = 122 |
Декабрь |
1200 / 12 х .851= 85 |
Для простоты расчеты тренда игнорировались и только два периода использовались для расчета каждого месячного индекса в вышеприведенном примере.
Пример 8 иллюстрирует, как индексы, которые всегда могут быть получены, применимы к прогнозам с регулируемым трендом.