
- •Развитие нефтегазового комплекса на современном этапе его перспективы.
- •Тема 1. Системы сбора и внутрипромыслового транспорта нефти и газа.
- •Вопрос 1.1: Этапы развития и эксплуатации нефтяного месторождения. Тема 1 Системы сбора и внутрипромыслового транспорта нефти и газа.
- •1.1. Этапы развития и эксплуатации нефтяного месторождения.
- •Вопрос 1.2: Общие сведения о проектах разработки и обустройства
- •Вопрос 1.3: Системы сбора, внутрипромыслового транспорта и подготовки нефти и газа на месторождениях.
- •Вопрос 1.4: Основные требования, предъявляемые к организации сбора и подготовки нефти, газа и воды.
- •Вопрос 1.5: Назначение и состав систем сбора.
- •Вопрос 1.6: Факторы, влияющие на выбор системы сбора нефти и газа.
- •Вопрос 1.7: Классификация систем сбора нефти и газа.
- •Вопрос 1.8: Двухтрубная самотечная система сбора нефти и газа.
- •Вопрос 1.9: Грозненская высоконанорная система сбора.
- •Вопрос 1.10: Напорная система сбора Гипровостокнефти.
- •Вопрос 1.13: Система сбора высоковязкой и парафинистой нефти.
- •Вопрос 1.14: Унифицированные технологические схемы комплексов сбора и подготовки нефти, газа и воды нефтегазодобывающих районов.
- •Вопрос 1.16: Преимущества и недостатки герметизированных систем сбора нефти, газа и воды.
- •Тема 2. Измерение количества нефти, газа и воды по скважинам.
- •Вопрос 2.1: Значение измерения продукции скважин.
- •Вопрос 2.3: Старые методы измерения продукции скважин.
- •Вопрос 2.4: Назначение базу типа "Спутник".
- •Вопрос 2.5: Классификация базу типа "Спутник".
- •40 Атм (4 мПа) – рабочее давление, на которое расчитана установка;
- •Преимущества.
- •«Озна массомер-е»
- •Вопрос 2.7: Измерение расхода газа и жидкости непосредственно в трубопроводе.
- •Тема 3. Сепарация нефти от газа.
- •Вопрос 3.1: Назначение нефтегазовых сепараторов.
- •Вопрос 3.2: Классификация сепараторов.
- •Вопрос 3.3: Конструкция сепараторов.
- •Вопрос 3.4: Работа сепаратора.
- •Вопрос 3.6: Выбор оптимального числа ступеней сепарации.
- •Вопрос 3.7: Сепараторы центробежные (гидроциклонные).
- •Вопрос 3.8: Сепараторы первой ступени типа убс и нгс.
- •Вопрос 3.9: Сепарационные установки с насосной откачкой типа бн.
- •Вопрос 30.10: Сепараторы концевые.
- •Вопрос 3.11: Сепарационные установки с предварительным сбросом пла стовой воды тина кссу, бас и упс.
- •Вопрос 3.12: Преимущества при внедрении установок предварительного
- •Вопрос 3.13: Преимущества и недостатки сепараторов различного типа.
- •Вопрос 3.14: Факторы, влияющие на расчет сепараторов по газу и жидкости.
- •1 Характеристика тво в нгду «Туймазанефть»
- •Нормы технологического режима работы установки
- •Вопрос 3.15: Расчет вертикального гравитационного сепаратора по газу.
- •Вопрос 3.16: Расчет вертикального гравитационного сепаратора по
- •Вопрос 3.17: Механический расчет сепараторов.
- •Тема 4. Промысловые трубопроводы.
- •Вопрос 4.1: Классификация промысловых трубопроводов.
- •Вопрос 4.2: Сортамент труб.
- •Вопрос 4.3: Порядок проведения работ при сооружении трубопровода.
- •Вопрос 4.4: Выбор трассы трубопроводов.
- •Вопрос 4.5: Опрессовка трубопроводов.
- •Вопрос 4.6: Виды коррозии трубопроводов.
- •Вопрос 4.7: Пассивная защита трубопроводов от коррозии.
- •Вопрос 4.8: Активная защита трубопроводов от коррозии.
- •Вопрос 4.9: Искусственные сооружения и переходы при прокладке
- •Вопрос 4.10: Обслуживание трубопроводов
- •Вопрос 4.11: Арматура трубопроводов.
- •Вопрос 4.12: Гидравлические сопротивления и гидравлический уклон.
- •Вопрос 4.19: Перекачка высоковязких и парафинистых нефтей.
- •Вопрос 4.20: Причины засорения трубопроводов.
- •Вопрос 4.20: Причины засорения трубопроводов.
- •Вопрос 4.21: Методы борьбы с отложениями парафина.
- •Вопрос 4.22: Методы борьбы с отложениями солей.
- •Вопрос 4.22: Методы борьбы с отложениями солей.
- •Тема 5. Подготовка нефти.
- •Вопрос 5.1: Понятие о нефтяных эмульсиях, их виды.
- •Вопрос 5.2: Классификация нефтяных эмульсий.
- •Вопрос 5.3: Образование нефтяных эмульсий.
- •Вопрос 5.1: Понятие о нефтяных эмульсиях, их виды.
- •Вопрос 5.2: Классификация нефтяных эмульсий.
- •Вопрос 5.3: Образование нефтяных эмульсий.
- •Вопрос 5.4: Физико-химические свойства нефтяных эмульсий.
- •Вопрос 5.5: Устойчивость нефтяных эмульсий.
- •Вопрос 5.6: Основные требования к качеству подготовки нефти.
- •Вопрос 5.7: Методы разрушения эмульсий.
- •Вопрос 5.8: Внутритрубная деэмульсация.
- •Вопрос 5.10: Фильтрация.
- •Вопрос 5.11: Термохимическая подготовка нефти.
- •Вопрос 5.12: Деэмульгаторы (пав), применяемые для разрушения
- •Вопрос 5.13: Классификация деэмульгаторов
- •Вопрос 5.14: Требования, предъявляемые к деэмульгаторам.
- •Вопрос 5.16: Термохимические установки обезвоживания нефти.
- •Вопрос 5.16: Термохимические установки обезвоживания нефти.
- •Вопрос 5.17: Схема электообессоливающей установки.
- •Вопрос 5.17: Схема электообессоливающей установки.
- •Вопрос 5.18: Технологические процессы стабилизации нефти.
- •Вопрос 5.19: Электродегидраторы.
- •Вопрос 5.20: Оборудование установок подготовки нефти.
- •Вопрос 5.21: Блочные автоматизированные деэмульсаторы типа у до.
- •Вопрос 5.22: Блоки дозирования химреагентов типа бр.
- •Вопрос 5.23: Основные понятия и определения в теории теплопередачи.
- •Тема 6. Нефтяные резервуары и насосные станции.
- •Вопрос 6.1: Назначение резервуаров, их виды.
- •Вопрос 6.2: Стальные вертикальные резервуары, их конструкция и монтаж.
- •Вопрос 6.3: Основания и фундаменты под резервуары.
- •Вопрос 6.3: Основания и фундаменты под резервуары.
- •Вопрос 6.4: Железобетонные резервуары, их типы, конструкция и область применения.
- •Вопрос 6.6: Резервуарные парки.
- •Вопрос 6.7: Предотвращение потерь нефти при хранении ее в резервуарах.
- •Вопрос 6.8: Расчет потерь легких фракций нефти при хранении ее в резервуарах.
- •Вопрос 6.9: Измерение количества и качества товарной нефти.
- •Вопрос 6.10: Безрезервуарная сдача нефти в магистральный нефтепровод
- •Вопрос 6.11: Чистка и ремонт резервуаров.
- •Вопрос 6.14: Нефтяные насосные станции, их назначение.
- •Вопрос 6.16: Эксплуатация насосных станций.
- •Тема 7 Водоснабжение нефтегазодобывающих предприятий.
- •Вопрос 7.1: Водопотребители нефтегазодобывающих предприятий.
- •Вопрос 7.2: Нормы водопотребления.
- •Вопрос 7.3: Расчет потребного количества воды для предприятий.
- •Вопрос 7.4: Качество воды, используемой для заводнения
- •Вопрос 7,5: Источники водоснабжения.
- •Вопрос 7.6: Сточные воды нефтяных месторождений.
- •Вопрос 7.11: Мероприятия по снижению коррозии труб и оборудования
- •Вопрос 7.12; Использование пресной воды, водозаборы.
- •Вопрос 7.13: Технологический процесс водоподготовки.
- •Вопрос 7.14: Использование подземных вод для заводнения пластов.
Вопрос 7.11: Мероприятия по снижению коррозии труб и оборудования
сточными водами.
Коррозия водоводов происходит вследствие присутствия в воде агрессивных агентов (углекислого газа, кислорода, сероводорода и т.д.).
Агрессивность углекислого газа, возрастающая с повышением температуры воды, связана с тем, что он понижает рМ воды и способствует разрушению защитных пленок на металле. Отложения окислов железа становятся рыхлыми и легко уносятся потоком воды.
Сероводород содержится о воде, способствует резком} увеличению скорости коррозии. Сероводород может образовываться в результате восстановления сульфатов CaSO4, содержащихся в воде. Сероводород реагирует с железом с образованием сернистого железа, которое не образует плотной защитной пленки на металле и не предохраняет его от дальнейшей коррозии.
Под действие растворенного в воде кислорода, особенно в открытых системах подготовки образуется серная кислота и сульфиды железа, выпадающие в осадок. Приведем эти реакции:
H;S - 2О2 -> H2SO4 и 4Fe2 f !2H2S + ЗО2 — 4Fe2S3J + I2H2O
Поэтому наличие в воде сероводорода даже в незначительном количестве может служить причиной интенсинной коррозии и снижения приемистости нагнетательных скважин.
Скорость углекислотой и сероводородной коррозии зависит главным образом от рН среды, а также от температуры и скорости движения воды, Чем выше температура и скорость движения воды, тем выше скорость химической коррозии.
Снизить коррозионную агрессивность воды можно:
!) исключением контакта пластовой сточной воды с кислородом воздуха:
2} введением в воду ингибиторов коррозии;
3) изоляцией поверхности труб и оборудования различными материалами;
<■!) обескислороживанием воды:
5) применением материалов, стойких к коррозии в пластовых водах.
Высокими защитными свойствами обладают отечественные ингибиторы И-1 -А, ИКБ-2, "Север-Г, снижающие скорость коррозии в среднем на 80-95 %. Широко применяются также высокоэффективные импортные ингибиторы коррозии, гакке как Виско-938, Виско-970, СК-378, CK-60I и другие. Эффективность зашиты ингибиторос зависит or многих факторов (общей минерализации вод, наличия бикарбонатных ионов, температуры закачиваемой воды водородного показателя рН, наличия в воде углекислого газа и сероводорода и т.д.) и должна определяться для каждого месторождения отдельно.
Нанесение покрытий на внутреннюю поверхность трубы в виде эпоксидных смол и лаков в значительной мере уменьшает также шероховатость стенок тр>б. что снижает гидравлические сопротивления в системах ППД в среднем на .1.0%, а зто в свою очередь приводит к снижению мощности насосов высокого давления, устанавливаемых на КНС.
Вопрос 7.12; Использование пресной воды, водозаборы.
Для ППД при разработке нефтяных месторождений, кроме пластовых сточных вод, используются пресные воды рек, озер, водохранилищ, которые негут в себе, особенно весной, большое количество механических примесей. Их закачка в продуктивные горизонты возможна лишь при соответствующей очистке. Для ППД часто используют также пресные грунтовые воды, получаемые из артезианских скважин, из под-русел рек, а также из водоносных горизонтов, лежащих выше разрабатываемых нефтяных пластов. Большим преимуществом этих вод является то, что состав их практически не меняется по сезонам года, они содержат мало взвешенных твердых частиц и могут использоваться для заводнения без очистки.
Водозаборные сооружения предназначены для забора воды из источников и подачи ее в водопроводную сеть или на водоочистную установку, водозаборы могут быть открытых водоемов и порусловые. В большинстве случаев используют подрусловые водозаборы.
В зависимости от местности и применяемого оборудования при использовании подрусловых вод водозаборы могут быть:
!) сифонные, когда устья гюдруслооых скважин связаны с сифонным коллектором;
2)
индивидуальные, когда в скважину спущен
центробежный насос, подающий воду в
резервуары станции второго подъема
(при этом отпадает необходимость
строительства станции первого подъема).
При сифонном водозаборе вода (рис. 56) через песчаную подушку 1 фильтруется в подрусловую скважину 2, из которой вакуум-насосм 4 подается в групповой сифонный коллектор 3, а из него в вакуум-котлы 5,
6 3 9 Ш '/ !? ft- ij
Рис. 56 Сифонный водозабор.
Сифонный коллектор 3 располагают параллельно берегу реки с небольшим уклоном в сторону насосной станции 6. Из вакуум-котлов 5 вода центробежным насосом 7 подается в нагнетательный трубопровод 8, а затем в магистральный водовод 9. Из магистрального водовода 9 она поступает по водоводам 10, идущим к подземным резервуарам 11 кустовых насосных станций 13, после чего по приемному трубопроводу 12 к центробежным насосам высокого давления 14 и закачивается через распределительный коллектор по отдельным трубопроводам 15 в нагнетательные скважины.
Подрусловые скважины 2 глубиной не более 90 м бурят на расстоянии 70-90 м от берега реки при расстояниях между ними не более 170 м. Стенки этих скважин крепят 300-мм обсадными трубами, в которые спускают 200-мм водоподъемные трубы. Устье их представляет круглое бетонное кольцо (колодец) с герметичным люком. Диаметр колодца 1,5 м, а глубина его зависит от глубины заложения сифонного коллектора 3.
Главная часть сифонного водозабора - насосная станция 6 первого подъема, оборудованная центробежными насосами 7 с различной подачей в зависимости от суммарного дебита водозабора. Для создания вакуума в сифонной системе предусмотрены вакуум-насосы.
Станция представляет собой железобетонный колодец диаметром 6-10 м, глубиной подземной части 9-17 м и высотой наземной части 5,7 -6,5 м. В нижней части станции расположены насосное оборудование и вакуум котлы, а в наземной на специальной площадке - электрораспределительное устройство.
Водозаборы сифонного типа просты и удобны в эксплуатации и могут быть рекомендованы как основные при условии высокого стояния уровня подрусловых вод.
При водозаборах с индивидуальными насосами в каждую подрусловую скважину, в которых уровень воды находится низко от поверхности земли, спускают вертикальные погружные центробежные насосы, которыми вода подается сразу на станцию второго подъема.
Строительство водозаборов с индивидуальными насосными установками в условиях высокого уровня подрусловых вод считается нецелесообразным. Такие установки необходимы для районов с низким уровнем грунтовых вод (менее 8 м), когда сифоном поднять воду из скважины невозможно.