
- •Навчальний посібник для студентів-технологів
- •Костянтинівка
- •Introduction то chemistry
- •Vocabulary
- •Exercises
- •1. Answer the questions.
- •2. Match the English word combinations with their Ukrainian equivalents;
- •3. Match the Ukrainian word combinations with their English equivalents
- •From the history of chemistry
- •Vocabulary
- •Exercises
- •Answer the questions
- •6. Translate the words in the brackets into English:
- •7. Translate the text using a dictionary. Some facts about chemistry
- •D. I. Mendeleyev
- •Exercises
- •1. Answer the questions
- •2. Translate the sentences paying attention to the passive constructions:
- •3. Open the brackets choosing the suitable word. Translate them.
- •Chemistry: key to progress and abundance
- •Vocabulary
- •Fields of chemistry
- •Vocabulary
- •Exercises
- •2.Answer the questions.
- •3.Fill in the gaps with suitable words given below.
- •4.Make up sentences out of these words.
- •5. Translate into English.
- •Symbols, formulas and equations
- •Vocabulary
- •Inorganic molecules and compounds
- •Vocabulary
- •Periodic law
- •Vocabulary
- •Exercises
- •Answer the questions.
- •True or false?
- •Найважливіші хімічні елементи
- •Rules of reading formulas and equations Правила читання хімічних формул
- •Приклади:
- •The periodic table of d.I. Mendeleyev
- •Vocabulary
- •Exercises
- •1. Answer the questions
- •2. Read and translate the text with vocabulary Joseph Priestley
- •Laboratory equipment
- •2.Learn the words and special term from the list.
- •Describe the functions of each piece of equipment. An experiment in the laboratory
- •Vocabulary
- •Exercises
- •1. Answer the questions
- •2. Give Ukrainian equivalents:
- •3. Translate the sentences:
- •4. Make the questions to the sentences:
- •The molecular theory of matter and the states of matter
- •Vocabulary
- •Exercises
- •1. Answer the questions
- •2. Give English equivalents:
- •3. Give Ukrainian equivalents:
- •4. Translate the sentences:
- •Atomic structure
- •Vocabulary
- •Exercises
- •1. Answer the questions
- •2. Give Ukrainian equivalents:
- •3. Give English equivalents:
- •8. Read and translate the text Molecules
- •Chemical and physical changes
- •Vocabulary
- •Exercises
- •1. Answer the questions
- •Find the pairs of synonyms:
- •Find the pairs of antonyms:
- •4. Translate the following sentences, mind the Participles:
- •5. Open the brackets translating the Ukrainian words:
- •Nuclear fission
- •Vocabulary
- •Exercises
- •1. Answer the questions
- •2. Translate the sentences into Ukrainian:
- •Open the brackets choosing the suitable word and translate them into
- •4. Translate the text in writing
- •Vocabulary
- •Exercises
- •5. Read and translate the text The Temperature Scales
- •Exercises
- •1. Give Ukrainian equivalents:
- •2. Give English equivalents:
- •Liquids
- •Vocabulary
- •Exercises
- •Exercises
- •1. Find Ukrainian equivalents:
- •2. Find English equivalents:
- •Vocabulary
- •Exercises
- •1. Answer the questions
- •2. Give synonyms:
- •3. Translate the following sentences:
- •Acids and bases
- •1. Extremely useful – надзвичайно корисні
- •2. Are common to all – загальні для всіх
- •3. Acetic acid - оцтова кислота
- •Vocabulary
- •Exercises
- •1. Answer the following questions.
- •2. Complete the sentences (use the text).
- •3. Characterize acids and bases using the following plan.
- •Vocabulary
- •Exercises
- •Chlorine
- •Vocabulary
- •Exercises
- •1. Answer the questions.
- •Make up a description of any element you like. Hydrochloric acid
- •Vocabulary
- •Exercises
- •Match English word combinations with their Ukrainian equivalents.
- •Answer the questions.
- •Solutions
- •Vocabulary
- •Exercises
- •Answer the questions
- •2. Translate the following sentences:
- •Nitrogen
- •Vocabulary
- •Exercises
- •Match English word combinations with their Ukrainian equivalents.
- •Answer the questions.
- •Silicon
- •Vocabulary
- •Exercises
- •Match English word combinations with their Ukrainian equivalents.
- •Answer the questions
- •Cellulose
- •Vocabulary
- •Exercises
- •Answer the questions.
- •Analytical chemistry methods of analysis
- •Methods of separation
- •Ion exchange methods in analytical chemistry
- •Ionization
- •Vocabulary
- •Exercises
- •Chromatography and ion exchange technique
- •Chromatography techniques
- •Gas analysis
- •Some physical methods used in gas analysis
- •Extraction
- •Precipitation
- •Electrolysis
- •Polymers
- •Notes and commentary
- •Vocabulary
- •Exercises
- •1. Answer the questions.
- •2. Match English word combinations with their Ukrainian equivalents.
- •3. Match Russian word combinations with their English equivalents.
- •Retell text using questions from Ex. 1 as a plan.
- •5. Read, translate and do the tasks.
- •Some applications of polymers
- •Vocabulary
- •Exercises
- •1. Read and translate the sentences. Correct the false statements.
- •2. Read the text, translate it in written form using dictionary.
- •The nature of polymeric materials
- •Vocabulary
- •Exercises
- •1. Answer the questions
- •Find the pairs of synonyms:
- •Find the pairs of antonyms:
- •Choose the Ukrainian equivalents from the right column:
- •5. Translate the sentences
- •6. Open the brackets choosing the suitable verb:
- •7. Open the brackets choosing the correct form of the verb:
- •7. Translate the text in writing
- •Vocabulary
- •Exercises
- •1. Answer the questions
- •2.Translate the following word-combinations:
- •Translate into English:
- •4. Open the brackets translating the Ukrainian words into English:
- •5. Translate the sentences into Ukrainian:
- •6. Translate the text using a dictionary
- •Microbiological production of industrial chemicals
- •Vocabulary
- •Exercises
- •1. Answer the questions
- •Translate the following sentences into Ukrainian, mind the sentences of the predicate:
- •3. Translate the following sentences into English, mind the use of the tenses:
- •4. Translate the following sentences into Ukrainian
- •5. Translate from Ukrainian into English
- •The chemical elements essential to life
- •Vocabulary
- •Exercises
- •1. Answer the questions
- •2. Find the pairs of synonyms:
- •Find the pairs of antonyms:
- •4. Translate paying attention to the meanings of the word “provide”
- •5. Open the brackets translating the Ukrainian words into English
- •6. Translate the text with a dictionary Hydrogen in industry
- •Plastics
- •Vocabulary
- •Exercises
- •Answer the questions.
- •Glass and glass products
- •Vocabulary
- •Exercises
- •Translate into Ukrainian the following international words.
- •Match English word combinations with their Ukrainian equivalents.
- •Answer the questions.
- •The nature of ceramics
- •Vocabulary
- •Exercises
- •1. Answer the questions
- •2. Translate the sentences:
- •7. Read and translate the texts
- •Ceramics
- •Vocabulary
- •Exercises
- •Translate the following international words into Ukrainian.
- •Answer the questions.
- •What is ecology?
- •Vocabulary
- •Exercises
- •1. Answer the questions
- •2. Translate the following sentences:
- •3. Translate the sentences:
- •The water problem
- •Pollution
- •Air pollution
- •Water pollution
- •Earth pollution
- •Vocabulary
- •Exercises
- •1. Answer the questions
- •2. Translate the following word-combinations:
- •3. Translate the following sentences into Ukrainian:
- •4. Translate the sentences into Ukrainian:
- •5. Write the translation of the following text Lead
- •The environmental protection
- •Vocabulary
- •Exercises
- •1. Match the words:
- •2. Translate the sentences into English:
- •3. Put 4 types of the questions to the sentences:
- •4. Translate the text
- •Radioactivity
- •Notes on the text
- •Vocabulary
- •Exercises
- •4. Read and translate the text The discovery of X-Rays and Radioactivity
- •5. Open the brackets and translate the sentence into Ukrainian:
- •Chernobyl nuclear power station
- •Vocabulary
- •Exercises
- •Protection of the environment
- •Industry of ukraine
- •Chemical industry
- •Texts for reading glass
- •Glass history natural glasses
- •Early glasses
- •Blowing, (b) cutting and (c) flattening. Modern glasses soda-lime-silica glasses
- •Cutting and drilling of glass
- •Glass cutting principle (scribing, flexuring).
- •Applications of glass
- •Glazing
- •Containers
- •Optical glass
- •Glass fibres for insulation and reinforcement
- •Borate and related glasses
- •Window glass
- •Sheet wire glass
- •Stemalite
- •Hardened glass for ship’s port holes
- •Safety glass for ground transport
- •Slag glass-ceramic
- •Mechanics of Glass Processes
- •Batching
- •Melting
- •Float Process
- •Fusion Draw
- •Pressing
- •Fibre Process
- •Tensile Drawing
- •Centrifugal Drawing
- •Wool fibre drawing process
- •Types of glass
- •Glass industry of ukraine
- •Glossary
- •Reference list
- •Contents
Vocabulary
marketability - товарність brushability – придатність до роботи пензликом brush marks - мазки, сліди пензликiв adequately – відповідним чином, рівномірно similarly - аналогічно rheology - реологія conventional - звичайний
|
shear - відшаровуватися drilling muds - бурильне мастило (шлам) to lubricate - змащувати drill bit - бурильне свердло rock chips – уламки породи oil well - нафтова свердловина at rest - в стані покою foodstuffs - харчові продукти in respect to – відносно |
Exercises
1. Read and translate the sentences. Correct the false statements.
1. If the paint is too thin it will adequately cover a surface. 2. The art of paper coating is dependent on the rheology of the coating material. 3. The petroleum industry uses small quantities of drilling muds. 4. Muds should exhibit viscosity under shearing. 5. Most foodstuffs are non-newtonian in behaviour.
2. Read the text, translate it in written form using dictionary.
Plastics have established themselves as active competitors to the older materials of construction, even on the score of price, and the rapid growth of the plastic industry is attributable in part to the utilization of this group of materials for industrial construction. Of the vinyl resins, polyvinyl chloride is perhaps most widely used and is fabricated in sheets and drawn in tubes by welding. Sharp-tipped tools and high machine speeds produce the best results with this class of material. However, where dimensional stability is of paramount importance the filled phenolics still lead the field. This material is used as the material of construction not as a lining, even to very large units of equipment. By selecting the filler this may be produced as a thermal and electrical insulator or conductor. The material is fabricated by moulding, so that roughly speaking, any detail that can be cast in iron can be formed from a filled phenolic, but where flatsided vessels are involved, plates are fabricated by joining with chemically accelerated cements, and this can be done in situ.
The nature of polymeric materials
Life depends fundamentally on organic polymers. These polymers provide not only food but also clothing, shelter and transportation.
Indeed nearly all the material need of man could be supplied by natural organic products. The list of these materials and things made of them might be very long: wood, fur, leather, wool, cotton, silk, rubber, oils, papers, paints and so on. The organic polymers from which such things could be made include proteins, cellulose, starch, resins, and a few other classes of compounds.
Modern methods of physical and chemical analyses have uncovered the principles that govern the properties of the natural polymers. On the basis of the discovery involved a new industry of man-made organic polymers has appeared. One could list the principal products: such as fibers, synthetic rubbers, coatings, plastics. Plastics and synthetic coating are already in common use.
Synthetic polymers now available already possess several of the properties required in a structural material. They are light in weight, easily transported, easily repaired, highly resistant to corrosion and solvents, and satisfactorily resistant to moisture. It would be necessary to add that they have long-lived durability and resistance to high temperatures. A very important question could arise whether synthetic polymers could be made inexpensive enough to compete with the structural materials such as metals and ceramics. The answer could be – “yes”. The natural polymers such as proteins, cellulose and other dominated his existence and even in ancient times people used these materials.
Yet as late as at the end of the 19th century polymer chemistry got little attention. Chemists attacked sugar, glycerol, fatty acids, alcohol and other organic compounds. But only feeble efforts were made to investigate such common materials as wood, starch, wool, silk. The substances composing these materials couldn’t be crystallized from solution, nor could they be isolated by distillation.
It was only in the 20th century that the scientists began thorough investigation of these materials. Having used some powerful physical instruments, an electron microscope, viscometer, X-ray diffraction apparatus, they could have revealed the polymers in all their intricacy. Their molecules were very large, the molecular weights running as high as million units, whereas simple organic substances such as sugar and gasoline have molecular weight in the range of only about 50-500.
The giant molecules can be composed of a large number of repeating units. Most polymers have the form long, flexible chains. Having found out that, chemists began synthesizing artificial polymers. This has led to the establishment of industries producing synthetic fibers and numerous polymeric materials.