
- •Биохимия (часть 1)
- •060101.65 – Лечебное дело
- •060103.65 – Педиатрия
- •060105.65 – Стоматология
- •СОдержАние
- •Предмет биохимии
- •1. Химия белков
- •1.1. Методы выделения и очистки белков
- •1.2. Функции белков
- •1.3. Аминокислотный состав белков
- •5) Положительно заряженные
- •1.4. Структурная организация белков
- •Методы определения n-концевой аминокислоты
- •Методы определения с-концевой аминокислоты
- •1.5. Физико-химические свойства белков
- •1.6. Классификация белков
- •1.6.1. Простые белки
- •1. Альбумины и глобулины.
- •2. Протамины и гистоны.
- •3. Проламины и глютелины.
- •1.6.2. Сложные белки
- •Производные гемоглобина
- •Структура нуклеиновых кислот
- •Контрольные вопросы
- •2. Ферменты
- •2.1. Химическая природа ферментов
- •2.2. Механизм действия ферментов
- •2.3. Кинетика ферментативных реакций
- •2.4. Свойства ферментов
- •2.5. Регуляция активности ферментов
- •1. Контроль количества фермента.
- •2.1. Влияние на ферменты активаторов и ингибиторов.
- •2.2. Химическая модификация фермента.
- •2.3. Аллостерическая регуляция.
- •2.6. Классификация и номенклатура ферментов
- •2.7. Ферменты в медицине
- •2. Приобретенные энзимопатии.
- •Контрольные вопросы
- •3. Витамины
- •3.1. Жирорастворимые витамины
- •D2 (эргокальциферол) d3 (холекальциферол)
- •3.2. Водорастворимые витамины
- •Методы определения витаминов
- •Контрольные вопросы
- •4. Основные принципы организации биомембран
- •4.1. Строение и функции мембран
- •4.2. Транспорт веществ через мембрану
- •Контрольные вопросы
- •5. Механизмы передачи гормонального сигнала
- •Трансмембранная передача гормонального сигнала
- •Контрольные вопросы
- •6. Введение в метаболизм
- •6.1. Общая схема катаболизма
- •6.2. Биоэнергетика
- •6.3. Организация и функционирование дыхательной цепи
- •6.4. Разобщение окисления и фосфорилирования
- •6.5. Микросомальное окисление
- •6.6. Антиоксидантная система
- •6.7. Реакции общего пути катаболизма
- •6.7.1. Окислительное декарбоксилирование пвк
- •6.7.2. Цикл трикарбоновых кислот
- •Анаболические функции цикла Кребса
- •Контрольные вопросы
- •7. Обмен углеводов
- •7.1. Переваривание углеводов
- •7.2. Обмен гликогена
- •7.3. Гликолиз
- •7.4. Включение фруктозы и галактозы в гликолиз
- •7.5. Челночные механизмы
- •7.6. Цикл кори
- •7.7. Спиртовое брожение
- •7.8. Пентозофосфатный путь превращения глюкозы
- •7.9. Глюконеогенез
- •7.10. Регуляция обмена углеводов
- •7.11. Нарушения углеводного обмена Нарушение гидролиза и всасывания углеводов
- •Гликогенозы
- •Нарушения промежуточного обмена углеводов
- •Гипер- и гипогликемия
- •Глюкозурия
- •Контрольные вопросы
- •Литература
- •11. Харитонов, я.Ю. Аналитическая химия. Аналитика 2. Количественный анализ. Физико-химические (инструментальные) методы анализа. / я.Ю. Харитонов. – м.: геотар-Медиа, 2014. – 656 с.
Контрольные вопросы
1. Перечислите основные мембранные структуры клетки.
2. Каков качественный и количественный состав мембран?
3. Какие липиды входят в состав биологических мембран? Каковы их свойства и функции?
4. В чем различие между периферическими и интегральными белками биологических мембран?
5. Перечислите функции биологических мембран.
6. Какие факторы могут вызвать изменение структуры и проницаемости мембраны?
7. Перечислите виды транспорта веществ через мембраны. Какие из них требуют энергетических затрат?
8. Почему перенос ионов даже по градиенту концентрации происходит только с участием ионных каналов?
9. Какую роль играют АТФ-азы в функционировании биологических мембран?
10. Изобразите схему работы натрий-калиевой АТФазы.
5. Механизмы передачи гормонального сигнала
Гормоны - вещества органической природы, вырабатывающиеся в специализированных клетках желез внутренней секреции, поступающие в кровь и оказывающие регулирующее влияние на обмен веществ и физиологические функции.
Специфические особенности биологического действия гормонов:
а) гормоны проявляют свое биологическое действие в малых концентрациях (от 10−6 до 10−12 М);
б) гормональный эффект реализуется через белковые рецепторы и внутриклеточные вторичные посредники (мессенджеры);
в) гормоны осуществляют свое действие путем увеличения скорости синтеза ферментов или изменения активности ферментов;
г) действие гормонов в организме в известной степени находится под контролем ЦНС;
д) продукция гормонов железами внутренней секреции регулируется при помощи механизмов прямой и обратной связей.
Гормоны классифицируют по их химической природе.
1. Пептидные и белковые гормоны включают обычно от 3 до 250 аминокислотных остатков. Это гормоны гипоталамуса и гипофиза (гормон роста, кортикотропин и др.), а также гормоны поджелудочной железы (инсулин, глюкагон).
2. Гормоны - производные аминокислот. Примерами являются гормоны надпочечников адреналин и норадреналин, гормон щитовидной железы тироксин.
3. Гормоны стероидной природы. Все стероидные гормоны яляются производными холестерина. Это гормоны коркового слоя надпочечников, кортизол, альдостерон, половые гормоны (эстрогены и андрогены) и др.
4. Эйкозаноиды - гормоноподобные вещества, оказывающие местное действие. Они являются производными полиненасыщенной жирной кислоты – арахидоновой.
Стероидные гормоны и гормоны щитоидной железы Т3 и Т4 - липофильные вещества, легко проникающие через клеточные мембраны. Гормоны белковой и пептидной природы, а также большинство гормонов-производных аминокислот проникать через мембрану не способны вследствие своей гидрофильности и больших размеров. В зависимости от физико-химических свойств гормонов существуют различные механизмы передачи гормонального сигнала.
Трансмембранная передача гормонального сигнала
Клеточные мембраны благодаря наличию специальных рецепторов воспринимают сигналы из внешней среды (например, молекулы гормонов, называемые первичными мессенджерами, или посредниками). Первый этап действия гормона на клетку-мишень - его присоединение к рецептору, далее сигнал передается внутрь клетки. По своей химической природе рецепторы почти всех биологически активных веществ являются гликопротеинами. Общее свойство рецепторов - высокая специфичность по отношению к одному определенному гормону.
Наиболее изученной является аденилатциклазная мессенджерная система (рис. 29). В нее входят рецептор гормона, G-белок, фермент аденилатциклаза, цАМФ-зависимая протеинкиназа, фосфодиэстераза.
Рецепторы гидрофильных гормонов, таких как адреналин, расположены на мембране. Связывание гормона (первичного мессенджера) с рецептором приводит к структурным изменениям внутриклеточного домена рецептора, что обеспечивает взаимодействие рецептора с ГТФ-связывающим белком (G-белком). G-белок представляет собой смесь 2 типов белков: активного Gs (от англ. stimulatory) и ингибиторного Gi. В составе каждого из них имеется три субъединицы (α, β и γ). Функция G-белка - проведение гормонального сигнала на уровне плазматической мембраны. В состоянии покоя G-белок связан с ГДФ. Гормонрецепторный комплекс переводит Gs-белок в активированное состояние, ГДФ замещается на ГТФ, что приводит к отделению субъединицы α, которая активирует аденилатциклазу. В отсутствие G-белка аденилатциклаза практически неактивна.
Аденилатциклаза - интегральный белок плазматических мембран, его активный центр ориентирован в сторону цитоплазмы. Аденилатциклаза катализирует реакцию синтеза из АТФ цАМФ (вторичного мессенджера).
Протеинкиназа А катализирует фосфорилирование внутриклеточных ферментов или белков-мишеней, изменяя их активность. Неактивная протеинкиназа А состоит из 4 субъединиц. Под действием цАМФ она переходит в активную форму за счет диссоциации субъединиц и фосфорилирует белок за счет АТФ. Процесс фосфорилирования-дефосфорилирования белков при участии протеинкиназ является общим фундаментальным механизмом действия вторичных мессенджеров внутри клетки.
Фосфодиэстераза вызывает распад цАМФ и тем самым прекращает действие сигнала.
|
Рис. 29. Аденилатциклазная мессенджерная система
|
Инозитолфосфатная система (рис. 30) включает три основных мембранных белка: рецептор гормона, фосфолипазу С и белок Gplc, активирующий фосфолипазу.
Рис. 30. Инозитолфосфатная мессенджерная система
Связывание гормона с рецептором приводит к изменению его конформации и увеличению сродства с белком Gplc. Он представляет собой тример, состоящий из субъединиц α, β и γ. При участии ГТФ комплекс «гормон - рецептор – G-белок» диссоциирует с освобождением -субъединицы. Она взаимодействует с фосфолипазой С и активирует ее. Субстрат этого фермента – фосфатидилинозитол-4,5-бисфосфат (ФИФ). В инозитолфосфатной системе в роли вторичных мессенджеров участвуют инозитол-1,4,5-трисфосфат (ИФ-3), диацилглицерин (ДАГ) и ионы Са2+. ИФ-3 выходит в цитозоль. ДАГ остается в мембране и участвует в активации фермента протеинкиназы С. ИФ-3 связывается с кальциевым каналом мембраны ЭПР, канал открывается, и ионы Са2+ поступают в цитозоль. Увеличивается скорость взаимодействия ионов Са2+ с неактивной протеинкиназой С и белком кальмодулином.
На внутренней стороне мебраны образуется комплекс «протеинкиназа С - Са2+ - ДАГ – фосфолипаза С». Происходит активирование протеинкиназы С, которая фосфорилирует ферменты по остаткам серина и треонина, меняя их активность.
Кальмодулин имеет 4 центра для связывания Са2+. Взаимодействие комплекса «кальмодулин - Са2+» с ферментами приводит к их активации.
Аденилатциклазная и инозитолфосфатная системы регулируют большое количество разных клеточных процессов. Эффект этих систем проявляется очень быстро.
Стероидные и тиреоидные гормоны обладают липофильными свойствами и легко проходят через клеточные мембраны. Их рецепторы находятся в цитозоле или в ядре клетки (внутриклеточные рецепторы).
Если рецептор гормона находится в цитозоле, там же происходит образование комплекса гормона с рецептором, который затем поступает в ядро. Рецепторы ряда гормонов расположены в ядре клетки, тогда комплекс «гормон – рецептор» может образоваться непосредственно в ядре (рис. 31).
|
Рис. 31. Передача гормональных сигналов через внутриклеточные рецепторы
|
В ядре комплекс гормон-рецептор взаимодействует с регуляторной нуклеотидной последовательностью ДНК, что приводит к изменению скорости транскрипции структурных генов и, следовательно, скорости трансляции. В результате изменяется количество белков, которые участвуют в метаболизме и влияют на функциональное состояние клетки.
Эффекты гормонов, которые передают сигнал через внутриклеточные рецепторы, нельзя наблюдать сразу, так как на протекание матричных процессов (транскрипцию и трансляцию) требуются часы.
Гормоны обеспечивают коммуникацию (обмен информацией) между разными клетками и органами. В результате действия этих механизмов достигается координация метаболизма и функций разных клеток и органов и адекватная реакция организма на изменения внешней среды.
В роли внеклеточных сигналов могут действовать не только гормоны, но и ряд других веществ - цитокины, биогенные амины, нейромедиаторы и др.