
- •Навчальний посібник
- •First term
- •Second term
- •Mathematics as a science
- •Mathematics
- •Task 17
- •Isaak Newton
- •Age problem
- •Self-assessment Be ready to speak on the topic "Mathematics as an independent science" using the following as a plan:
- •Check your active vocabulary on the topic:
- •Translate into English and be ready to give illustrative examples:
- •Fill in the gaps using a word from the list:
- •Arithmetic operations
- •Four basic operations of arithmetic
- •Two Characteristics of Addition
- •Self-assessment
- •Rational numbers
- •Rational and irrational numbers
- •Rational and irrational numbers
- •What is a number that is not rational?
- •Self-assessment
- •Properties of rational numbers
- •Properties of rational numbers
- •Properties of rational numbers
- •Reciprocal Fractions
- •Reducing Fractions to Lowest Terms
- •A Visit to a Concert
- •Self-assessment
- •Geometry
- •Meaning of geometry
- •Points and Lines
- •The history of geometry
- •Strange figures.
- •Measure the water.
- •Self-assessment
- •Simple closed figures
- •Simple closed figures
- •Simple closed figures
- •Problems of Cosmic and Cosmetic Physics
- •How to find the hypotenuse
- •Geometry Challenges
- •Self-assessment
- •Functional organization of computer
- •Computers
- •An a is a b that c
- •Find the numbers
- •Hundreds and hundreds
- •Tasks for self-assessment
- •Computer programming
- •Now read the description below. Do you like it? Why/Why not?
- •Instruction, instruct, instructed, instructor
- •Programming languages
- •Testing the computer program
- •Genius’s answer
- •A witty answer
- •The oldest profession
- •Tasks for self-assessment
- •Additional texts for reading
- •Read the text and summarise the main ways of expressing numbers in English.
- •Expressing numbers in english
- •Expressing millions
- •Ways of expressing the number 0
- •Fractional numbers
- •Writing full stops and commas in numbers
- •A short introduction to the new math
- •Algorithm
- •Mathematical component of the curriculum
- •Some facts on the development of the number system
- •The game of chess
- •Computers in our life
- •Is "laptop" being phased out?
- •The Main Pieces of Hardware
- •Text 10
- •Programs and programming languages
- •Text 11
- •All about software Categories of applications software explained
- •Systems Software
- •Applications Software
- •All the Other 'Ware Terminology
- •Malware
- •Greyware
- •Text 12
- •Advantages and disadvantages of the internet
- •Advantages
- •Disadvantages
- •Text 13
- •Text 14
- •Thinking about what we’ve found
- •Meta-Web Information
- •Text 15
- •Computer-aided instruction
- •Text 16
- •Teacher training
- •Іменник Утворення множини іменників
- •Правила правопису множини іменників
- •Окремі випадки утворення множини іменників
- •Присвійний відмінок
- •Практичні завдання
- •Артикль
- •Вживання неозначеного артикля
- •Вживання означеного артикля
- •Відсутність артикля перед обчислюваними іменниками
- •Вживання артикля з власними іменниками
- •Практичні завдання
- •Прикметник
- •Практичні завдання
- •Числівник
- •Практичні завдання
- •Займенник Особові займенники
- •Присвійні займенники
- •Зворотні займенники
- •Вказівні займенники
- •Питальні займенники
- •Неозначені займенники
- •Кількісні займенники
- •Практичні завдання
- •Прийменник
- •Дієслово
- •Неозначені часи indefinite tenses
- •Теперішній неозначений час the present indefinite tense active
- •Вживання Present Indefinite Active
- •Майбутній неозначений час the future indefinite tense active
- •Практичні завдання
- •Did you have a meeting yesterday?
- •I had an exam last week.
- •I didn't have an exam last week. Did you?
- •Тривалі часи дієслова continuous tenses
- •Теперішній тривалий час The present continuous tense active
- •Минулий тривалий час The past continuous tense active
- •Майбутній тривалий час The future continuous tense active
- •Практичні завдання
- •Перфектні часи perfect tenses
- •Теперішній перфектний час The present perfect tense active
- •Минулий перфектний час The perfect past tense active
- •Майбутній перфектний час The future perfect tense active
- •Практичні завдання
- •Узгодження часів sequence of tenses
- •Практичні завдання
- •Модальні дієслова modal verbs
- •Практичні завдання
- •Типи питальних речень question types
- •Практичні завдання
- •Пасивний стан дієслова passive voice
- •Практичні завдання
- •Check yourself
- •Читання буквосполучень
- •Читання голосних буквосполучень
- •Читання деяких приголосних та їхніх сполучень
- •Irregular verbs
- •Indefinite Tenses
- •Continuous Tenses
- •Perfect Tenses
- •Perfect Continuous Tenses
- •List of Proper Names
- •Sources of used materials
- •Contents
Simple closed figures
Task 1
Do you agree that "Without geometry, life is pointless"? If you do, have some fun:
What do you say when you see an empty parrot cage? – Polygon.
What is the best compliment to an equilateral triangle? – Nice legs!
Why is the obtuse angle so upset? – He is never right!
Task 2
Get ready for module text reading. Practice active vocabulary on the topic. First, read the words in the left column paying attention to their pronunciation. Then, find the Ukrainian equivalents in the right column. Spare column is left for your notes.
|
|
прямий, гострий, тупий кути кордон, межа градусна міра міра сторін, їх довжина сторона внутрішній, зовнішній у просторі спільна точка на площині оточувати, вміщати перетинати проста замкнена фігура вершина кута точне розташування поширюватися промінь кут напрям трапеція основа трапеції протилежний прямокутний, рівносторонній, рівнобедрений трикутник катет та гіпотенуза чотирикутник багатокутник паралелограм прямокутник |
Task 3
Read the text and underline the names of simple closed figures.
Simple closed figures
Geometry studies figures in the space and on the plane. The main geometric notions are the notions of a point and a line. A point is an exact location in space. A line consists of sets of points. Lines form line segments, rays and angles. A line segment includes endpoints and all points between them. A ray is a line segment extended in one direction.
Drawing two rays originating from the same endpoint we get an angle. The common point of the two rays is the vertex of the angle. Angles separate the plane into three distinct sets of points: interior, exterior, and the angle. The letter naming the vertex of an angle is the middle letter in naming of each angle.
A right angle has a measure of 90°. An acute angle has a degree measure less than 90°. An obtuse angle has a degree measure greater than 90°.
A simple closed figure is any figure drawn in a plane in such a way that boundary never crosses or intersects itself and encloses part of the plane. Every simple closed figure separates the plane into three distinct sets of point. The interior of the figure is the sets of all points in the part of the plane enclosed by the figure. The exterior of the figure is the set of point in the plane which are outside the figure. And finally, the simple closed figure itself is still another set of points.
A simple closed figure formed by line segments is called a polygon. Each of the line segments is called a side of the polygon. Polygons may be classified according to the measures of the angles or the measure of the sides. Triangle can be equilateral. The sides of such triangle all have the same linear measure. An isosceles triangle has two sides of the same measure. A right triangle has one right angle. A right triangle has two legs and a hypotenuse. A hypotenuse is a side opposite to the right angle.
A parallelogram is a quadrilateral whose opposite sides are parallel. So the set of all parallelograms is a subset of all quadrilaterals. A trapezoidal has only two parallel sides. They are called the bases of a trapezoidal.
Task 4
Draw simple figures. Let your partner check the drawings.
A parallelogram
|
A quadrilateral |
A polygon |
A line segment
|
An isosceles triangle |
A square |
A trapezoidal
|
A ray |
A right triangle |
An equilateral triangle
|
An obtuse angle |
An acute angle |
Task5
Read the text again and find the answers to the following questions:
What does geometry study?
What are the main geometric notions?
What is a point?
What does a line consist of?
What does a line form?
What does a line segment include?
What is a ray?
How can we get an angle?
What do we call a vertex of the angle?
How does the angle separate the plane?
What is a polygon?
What does a polygon consist of?
How can polygons be classified?
What is a triangle?
What types of triangle do you know?
What triangle do we call an equilateral one?
What is an isosceles triangle?
How do we call the sides of the right triangle?
What is a quadrilateral?
How do we call the sides of a trapezoidal?
Task 6
Fill in the gaps using the words from the box:
interior acute angle side polygon sets of points quadrilateral space |
Exterior right crosses measure trapezoidal isosceles endpoints Lines Figures
|
intersects obtuse vertex of the angle equilateral opposite legs a line segment a point and a line |
Geometry studies … in the space and on the plane.
The main geometric notions are the notions of … … .
A point is an exact location in ….
A line consists of … ….
… form line segments, rays and angles.
A line segment includes … and all points between them.
A ray is … extended in one direction.
Drawing two rays originating from the same endpoint we get an … .
The common point of the two rays is the ….
A right angle has a … of 90°.
An … angle has a degree measure less than 90°.
An … angle has a degree measure greater than 90°.
A simple closed figure is any figure drawn in a plane in such a way that boundary never … or … itself and encloses part of the plane.
The … of the figure is the sets of all points in the part of the plane enclosed by the figure.
The … of the figure is the set of point in the plane which are outside the figure.
A simple closed figure formed by line segments is called a ….
Each of the line segments is called a … of the polygon.
The sides of … triangle all have the same linear measure.
An … triangle has two sides of the same measure.
A … triangle has one right angle.
A right triangle has two … and a hypotenuse.
A hypotenuse is a side … to the right angle.
A parallelogram is a … whose opposite sides are parallel.
A … has only two parallel sides.
Task 7
Fill in the gaps: