
- •Навчальний посібник
- •First term
- •Second term
- •Mathematics as a science
- •Mathematics
- •Task 17
- •Isaak Newton
- •Age problem
- •Self-assessment Be ready to speak on the topic "Mathematics as an independent science" using the following as a plan:
- •Check your active vocabulary on the topic:
- •Translate into English and be ready to give illustrative examples:
- •Fill in the gaps using a word from the list:
- •Arithmetic operations
- •Four basic operations of arithmetic
- •Two Characteristics of Addition
- •Self-assessment
- •Rational numbers
- •Rational and irrational numbers
- •Rational and irrational numbers
- •What is a number that is not rational?
- •Self-assessment
- •Properties of rational numbers
- •Properties of rational numbers
- •Properties of rational numbers
- •Reciprocal Fractions
- •Reducing Fractions to Lowest Terms
- •A Visit to a Concert
- •Self-assessment
- •Geometry
- •Meaning of geometry
- •Points and Lines
- •The history of geometry
- •Strange figures.
- •Measure the water.
- •Self-assessment
- •Simple closed figures
- •Simple closed figures
- •Simple closed figures
- •Problems of Cosmic and Cosmetic Physics
- •How to find the hypotenuse
- •Geometry Challenges
- •Self-assessment
- •Functional organization of computer
- •Computers
- •An a is a b that c
- •Find the numbers
- •Hundreds and hundreds
- •Tasks for self-assessment
- •Computer programming
- •Now read the description below. Do you like it? Why/Why not?
- •Instruction, instruct, instructed, instructor
- •Programming languages
- •Testing the computer program
- •Genius’s answer
- •A witty answer
- •The oldest profession
- •Tasks for self-assessment
- •Additional texts for reading
- •Read the text and summarise the main ways of expressing numbers in English.
- •Expressing numbers in english
- •Expressing millions
- •Ways of expressing the number 0
- •Fractional numbers
- •Writing full stops and commas in numbers
- •A short introduction to the new math
- •Algorithm
- •Mathematical component of the curriculum
- •Some facts on the development of the number system
- •The game of chess
- •Computers in our life
- •Is "laptop" being phased out?
- •The Main Pieces of Hardware
- •Text 10
- •Programs and programming languages
- •Text 11
- •All about software Categories of applications software explained
- •Systems Software
- •Applications Software
- •All the Other 'Ware Terminology
- •Malware
- •Greyware
- •Text 12
- •Advantages and disadvantages of the internet
- •Advantages
- •Disadvantages
- •Text 13
- •Text 14
- •Thinking about what we’ve found
- •Meta-Web Information
- •Text 15
- •Computer-aided instruction
- •Text 16
- •Teacher training
- •Іменник Утворення множини іменників
- •Правила правопису множини іменників
- •Окремі випадки утворення множини іменників
- •Присвійний відмінок
- •Практичні завдання
- •Артикль
- •Вживання неозначеного артикля
- •Вживання означеного артикля
- •Відсутність артикля перед обчислюваними іменниками
- •Вживання артикля з власними іменниками
- •Практичні завдання
- •Прикметник
- •Практичні завдання
- •Числівник
- •Практичні завдання
- •Займенник Особові займенники
- •Присвійні займенники
- •Зворотні займенники
- •Вказівні займенники
- •Питальні займенники
- •Неозначені займенники
- •Кількісні займенники
- •Практичні завдання
- •Прийменник
- •Дієслово
- •Неозначені часи indefinite tenses
- •Теперішній неозначений час the present indefinite tense active
- •Вживання Present Indefinite Active
- •Майбутній неозначений час the future indefinite tense active
- •Практичні завдання
- •Did you have a meeting yesterday?
- •I had an exam last week.
- •I didn't have an exam last week. Did you?
- •Тривалі часи дієслова continuous tenses
- •Теперішній тривалий час The present continuous tense active
- •Минулий тривалий час The past continuous tense active
- •Майбутній тривалий час The future continuous tense active
- •Практичні завдання
- •Перфектні часи perfect tenses
- •Теперішній перфектний час The present perfect tense active
- •Минулий перфектний час The perfect past tense active
- •Майбутній перфектний час The future perfect tense active
- •Практичні завдання
- •Узгодження часів sequence of tenses
- •Практичні завдання
- •Модальні дієслова modal verbs
- •Практичні завдання
- •Типи питальних речень question types
- •Практичні завдання
- •Пасивний стан дієслова passive voice
- •Практичні завдання
- •Check yourself
- •Читання буквосполучень
- •Читання голосних буквосполучень
- •Читання деяких приголосних та їхніх сполучень
- •Irregular verbs
- •Indefinite Tenses
- •Continuous Tenses
- •Perfect Tenses
- •Perfect Continuous Tenses
- •List of Proper Names
- •Sources of used materials
- •Contents
Geometry
Task 1
Can you give definitions to such geometric terms as "a circle", "parallel lines". Compare your ideas with the given above.
A circle is a round straight line with a hole in the middle.
Parallel lines have got so much in common. It’s a shame they never meet!
Note: to have in common – мати щось спільне; it’s a shame! – просто неподобство!
Task 2
Get ready for module text reading. Practice active vocabulary on the topic. Read the words in the left column paying attention to their pronunciation. Find the Ukrainian equivalents in the right column. Spare column is left for your notes.
Geometry To define Volume To be concerned with To apply smth to To spread Intriguing Mysterious To improve on To include Shape Size Earth Relation Point Location Space Dimension Dot To refer to Capital letter To mark Ruler To draw A straight line Line segment Endpoint To extend indefinitely |
|
Поширюватись Точка Відношення Визначати Земля Об’єм Розмір Форма Бути зацікавленим Включати, містити Інтригуючий Покращувати, розвивати Загадковий Геометрія Застосовувати у, до Необмежено Місцезнаходження Поширюватись Простір Кінець відрізка Вимір Крапка Відрізок Називати Пряма лінія Намалювати, накреслити Позначити Велика літера Лінійка |
Task 3
Guess what?
A branch of mathematics concerned with shape, size, relative position of figures and the properties of space.
A mathematician who works in the field of geometry..
An instrument used in geometry, technical drawing, printing as well as engineering and building to measure distances or to rule straight lines.
Amount of fluid (gas or liquid) that the container could hold and which can be easily calculated using arithmetic formulas.
Geometric property of an object or its external boundary (outline, external surface).
An indication of how big the object is.
The third planet from the Sun.
A mark or a dot denoting a geometric object.
A sentence starts with it.
The shortest distance between two points.
Task 4
Practice for pronunciation. Repeat the words after the teacher. Translate the groups of the derivatives into Ukrainian.
mysterious – mystery – to mystify;
measure – to measure – measurement – measurable – measurability – immeasurable;
to improve – improvable – improvement;
to imagine – imagination – imaginable;
to extend – extensive – extension,
complete – to complete – completion;
to include – to exclude – inclusion;
shape – to shape – shapeless – shaping;
to move – movable – immovable;
sun – sunny – sunless;
to refer – reference – referee – referable – referent;
location – to locate – local – locally,
size–sizeless;
between – betweenness;
dimension – dimensional;
common – commonly – commoner – uncommon;
indefinitely – definite – to define;
to land – land – landless.
Task 5
Study the list of countries and nations. Practice pronunciation of the words.
Babilon – Babilonians
Egypt – Egiptians
Greece – Greeks
Ukraine – Ukrainians
Task 6
Study the list of prominent scientists. Practice pronunciation of their names.
Archimedes
Einstein
Euclid
Pythagoras
Riemann
Task 7
Before reading module text listen to the first paragraph of it and say where geometry began and who developed geometrical knowledge?
Task 8
Now listen to the second paragraph and fill in the gaps:
Today 1) … includes not only the study of the 2) … and size of the earth and all things on it, but also the study of relations between geometric 3) … . The most fundamental 4) … in the study of geometry is the idea of a point. A 5) … is an exact location in space. You cannot see a point, feel a point, or move a point, because it has no dimensions. There are points (locations) on the earth, in the earth, in the 6) … , on the sun, and everywhere in space. In writing we represent the points by dots. Remember the dot is only a picture of a point and not the point itself. Points are commonly referred to by using 7) … letters.
Task 9
Listen to the third paragraph of the text and give English equivalents for the following: планиметрія, стереометрія.
Make use of the list: plane geometry, projective geometry, solid geometry, analytic geometry, differential geometry.
Task 10
Read the text and say what idea is the most fundamental in the study of geometry.