
- •Навчальний посібник
- •First term
- •Second term
- •Mathematics as a science
- •Mathematics
- •Task 17
- •Isaak Newton
- •Age problem
- •Self-assessment Be ready to speak on the topic "Mathematics as an independent science" using the following as a plan:
- •Check your active vocabulary on the topic:
- •Translate into English and be ready to give illustrative examples:
- •Fill in the gaps using a word from the list:
- •Arithmetic operations
- •Four basic operations of arithmetic
- •Two Characteristics of Addition
- •Self-assessment
- •Rational numbers
- •Rational and irrational numbers
- •Rational and irrational numbers
- •What is a number that is not rational?
- •Self-assessment
- •Properties of rational numbers
- •Properties of rational numbers
- •Properties of rational numbers
- •Reciprocal Fractions
- •Reducing Fractions to Lowest Terms
- •A Visit to a Concert
- •Self-assessment
- •Geometry
- •Meaning of geometry
- •Points and Lines
- •The history of geometry
- •Strange figures.
- •Measure the water.
- •Self-assessment
- •Simple closed figures
- •Simple closed figures
- •Simple closed figures
- •Problems of Cosmic and Cosmetic Physics
- •How to find the hypotenuse
- •Geometry Challenges
- •Self-assessment
- •Functional organization of computer
- •Computers
- •An a is a b that c
- •Find the numbers
- •Hundreds and hundreds
- •Tasks for self-assessment
- •Computer programming
- •Now read the description below. Do you like it? Why/Why not?
- •Instruction, instruct, instructed, instructor
- •Programming languages
- •Testing the computer program
- •Genius’s answer
- •A witty answer
- •The oldest profession
- •Tasks for self-assessment
- •Additional texts for reading
- •Read the text and summarise the main ways of expressing numbers in English.
- •Expressing numbers in english
- •Expressing millions
- •Ways of expressing the number 0
- •Fractional numbers
- •Writing full stops and commas in numbers
- •A short introduction to the new math
- •Algorithm
- •Mathematical component of the curriculum
- •Some facts on the development of the number system
- •The game of chess
- •Computers in our life
- •Is "laptop" being phased out?
- •The Main Pieces of Hardware
- •Text 10
- •Programs and programming languages
- •Text 11
- •All about software Categories of applications software explained
- •Systems Software
- •Applications Software
- •All the Other 'Ware Terminology
- •Malware
- •Greyware
- •Text 12
- •Advantages and disadvantages of the internet
- •Advantages
- •Disadvantages
- •Text 13
- •Text 14
- •Thinking about what we’ve found
- •Meta-Web Information
- •Text 15
- •Computer-aided instruction
- •Text 16
- •Teacher training
- •Іменник Утворення множини іменників
- •Правила правопису множини іменників
- •Окремі випадки утворення множини іменників
- •Присвійний відмінок
- •Практичні завдання
- •Артикль
- •Вживання неозначеного артикля
- •Вживання означеного артикля
- •Відсутність артикля перед обчислюваними іменниками
- •Вживання артикля з власними іменниками
- •Практичні завдання
- •Прикметник
- •Практичні завдання
- •Числівник
- •Практичні завдання
- •Займенник Особові займенники
- •Присвійні займенники
- •Зворотні займенники
- •Вказівні займенники
- •Питальні займенники
- •Неозначені займенники
- •Кількісні займенники
- •Практичні завдання
- •Прийменник
- •Дієслово
- •Неозначені часи indefinite tenses
- •Теперішній неозначений час the present indefinite tense active
- •Вживання Present Indefinite Active
- •Майбутній неозначений час the future indefinite tense active
- •Практичні завдання
- •Did you have a meeting yesterday?
- •I had an exam last week.
- •I didn't have an exam last week. Did you?
- •Тривалі часи дієслова continuous tenses
- •Теперішній тривалий час The present continuous tense active
- •Минулий тривалий час The past continuous tense active
- •Майбутній тривалий час The future continuous tense active
- •Практичні завдання
- •Перфектні часи perfect tenses
- •Теперішній перфектний час The present perfect tense active
- •Минулий перфектний час The perfect past tense active
- •Майбутній перфектний час The future perfect tense active
- •Практичні завдання
- •Узгодження часів sequence of tenses
- •Практичні завдання
- •Модальні дієслова modal verbs
- •Практичні завдання
- •Типи питальних речень question types
- •Практичні завдання
- •Пасивний стан дієслова passive voice
- •Практичні завдання
- •Check yourself
- •Читання буквосполучень
- •Читання голосних буквосполучень
- •Читання деяких приголосних та їхніх сполучень
- •Irregular verbs
- •Indefinite Tenses
- •Continuous Tenses
- •Perfect Tenses
- •Perfect Continuous Tenses
- •List of Proper Names
- •Sources of used materials
- •Contents
Properties of rational numbers
Let’s solve the 1)… . John has read 2) … … … … books as Bill. John has read 7 books. How many books has Bill read?
This problem is easily translated into the 3)… 2n = 7, where n represents the number of books that Bill has read. If we are allowed to use only 4) …, the equation 2n=7 has no 5)… . This is an indication that the 6)… of integers does not meet all our needs.
If we try to solve the equation 2n = 7 we will find that n = 7/2 as to 7) … a multiplier you should divide the 8)… 7 by the multiplier 2. It is the name for a rational number. As we know a rational number is a 9) … of two integers p/q where q is not 10) … to 0. The denominator denotes the number of equal parts into which the 11) … is divided. The 12) … denotes how many of these parts are taken.
Fractions representing 13) … less than 1, like 2/3 for example are called 14) … fractions. Fractions which name a number equal or greater than 1, like 3/3 or 3/2, are called 15) … fractions. There are numbers like 1 ½ (one and one second) which name a whole number and a 16) … number. Such numerals are called 17) … fractions. Fractions which represent the same fractional numbers like 1/2, 2/4, 4/8 and so on are called 18) … fractions.
We can change such fractions to their 19) … or lower terms. If the numerator and denominator of the fraction are relatively prime we call it the 20)… fraction. The process of bringing a fractional number to lower terms is called 21) ... a fraction. Multiplying both integers named in the numerator and denominator of the fraction by the same whole number simply produces another name for the fractional number.
To reduce a fraction to lower terms you must determine the 22) … … … . The greatest common factor is the largest possible 23) … by which the numerator as well as denominator is divisible.
You can also perform all 24) … operations with rationals. Before performing addition or 25) … with fractional numerals you must bring them to a 26) … … . When multiplying with fractions you should find the 27) … of the numerators and the product of denominators. Dividing simple fractions one by another you must multiply the numerator of the dividend by the denominator of the 28) … and also multiply the denominator of the 29) … by the numerator of the divisor. For example 3/8 : 5/9 = 3/8 ∙ 9/5
From the above we can draw the 30) … that mathematical concepts and principles are just as valid in the case of rational numbers as in the case of integers.
Task 8
Prepare the reports on the following topics:
The types of fractions.
Performing arithmetic operations with rationals.
Main properties of rationals.
Task 9
Tell the class about properties of rational numbers using the questions on the module text as a plan.
Task 10
Read the text and render it in English.
Reciprocal Fractions
To find the reciprocal of a fraction, flip it over, so that the numerator becomes the denominator and the denominator becomes the numerator. That is: the reciprocal of 4/5 is 5/4.
Note that the product of
a fraction and its reciprocal is always:
4/5
5/4
= 20/20 = 1
In the case of a whole number, think of it as having a denominator of 1: the reciprocal of 5 is 1/5. 5/1 1/5 = 5/5 = 1
Every number has a reciprocal except for 0. There is nothing you can multiply by 0 to create a product of 1, so it has no reciprocal. Reciprocals are used when dividing fractions.
Task 11
Read the text and translate it into Ukrainian.