
- •Навчальний посібник
- •First term
- •Second term
- •Mathematics as a science
- •Mathematics
- •Task 17
- •Isaak Newton
- •Age problem
- •Self-assessment Be ready to speak on the topic "Mathematics as an independent science" using the following as a plan:
- •Check your active vocabulary on the topic:
- •Translate into English and be ready to give illustrative examples:
- •Fill in the gaps using a word from the list:
- •Arithmetic operations
- •Four basic operations of arithmetic
- •Two Characteristics of Addition
- •Self-assessment
- •Rational numbers
- •Rational and irrational numbers
- •Rational and irrational numbers
- •What is a number that is not rational?
- •Self-assessment
- •Properties of rational numbers
- •Properties of rational numbers
- •Properties of rational numbers
- •Reciprocal Fractions
- •Reducing Fractions to Lowest Terms
- •A Visit to a Concert
- •Self-assessment
- •Geometry
- •Meaning of geometry
- •Points and Lines
- •The history of geometry
- •Strange figures.
- •Measure the water.
- •Self-assessment
- •Simple closed figures
- •Simple closed figures
- •Simple closed figures
- •Problems of Cosmic and Cosmetic Physics
- •How to find the hypotenuse
- •Geometry Challenges
- •Self-assessment
- •Functional organization of computer
- •Computers
- •An a is a b that c
- •Find the numbers
- •Hundreds and hundreds
- •Tasks for self-assessment
- •Computer programming
- •Now read the description below. Do you like it? Why/Why not?
- •Instruction, instruct, instructed, instructor
- •Programming languages
- •Testing the computer program
- •Genius’s answer
- •A witty answer
- •The oldest profession
- •Tasks for self-assessment
- •Additional texts for reading
- •Read the text and summarise the main ways of expressing numbers in English.
- •Expressing numbers in english
- •Expressing millions
- •Ways of expressing the number 0
- •Fractional numbers
- •Writing full stops and commas in numbers
- •A short introduction to the new math
- •Algorithm
- •Mathematical component of the curriculum
- •Some facts on the development of the number system
- •The game of chess
- •Computers in our life
- •Is "laptop" being phased out?
- •The Main Pieces of Hardware
- •Text 10
- •Programs and programming languages
- •Text 11
- •All about software Categories of applications software explained
- •Systems Software
- •Applications Software
- •All the Other 'Ware Terminology
- •Malware
- •Greyware
- •Text 12
- •Advantages and disadvantages of the internet
- •Advantages
- •Disadvantages
- •Text 13
- •Text 14
- •Thinking about what we’ve found
- •Meta-Web Information
- •Text 15
- •Computer-aided instruction
- •Text 16
- •Teacher training
- •Іменник Утворення множини іменників
- •Правила правопису множини іменників
- •Окремі випадки утворення множини іменників
- •Присвійний відмінок
- •Практичні завдання
- •Артикль
- •Вживання неозначеного артикля
- •Вживання означеного артикля
- •Відсутність артикля перед обчислюваними іменниками
- •Вживання артикля з власними іменниками
- •Практичні завдання
- •Прикметник
- •Практичні завдання
- •Числівник
- •Практичні завдання
- •Займенник Особові займенники
- •Присвійні займенники
- •Зворотні займенники
- •Вказівні займенники
- •Питальні займенники
- •Неозначені займенники
- •Кількісні займенники
- •Практичні завдання
- •Прийменник
- •Дієслово
- •Неозначені часи indefinite tenses
- •Теперішній неозначений час the present indefinite tense active
- •Вживання Present Indefinite Active
- •Майбутній неозначений час the future indefinite tense active
- •Практичні завдання
- •Did you have a meeting yesterday?
- •I had an exam last week.
- •I didn't have an exam last week. Did you?
- •Тривалі часи дієслова continuous tenses
- •Теперішній тривалий час The present continuous tense active
- •Минулий тривалий час The past continuous tense active
- •Майбутній тривалий час The future continuous tense active
- •Практичні завдання
- •Перфектні часи perfect tenses
- •Теперішній перфектний час The present perfect tense active
- •Минулий перфектний час The perfect past tense active
- •Майбутній перфектний час The future perfect tense active
- •Практичні завдання
- •Узгодження часів sequence of tenses
- •Практичні завдання
- •Модальні дієслова modal verbs
- •Практичні завдання
- •Типи питальних речень question types
- •Практичні завдання
- •Пасивний стан дієслова passive voice
- •Практичні завдання
- •Check yourself
- •Читання буквосполучень
- •Читання голосних буквосполучень
- •Читання деяких приголосних та їхніх сполучень
- •Irregular verbs
- •Indefinite Tenses
- •Continuous Tenses
- •Perfect Tenses
- •Perfect Continuous Tenses
- •List of Proper Names
- •Sources of used materials
- •Contents
Self-assessment
Be ready to speak on the topic "Rational Numbers" using the following as a plan:
What is calculus?
What do we need to measure numbers?
What is a natural number? Give examples.
What do the natural numbers include?
What do the integers include?
How can the perfect squares be presented?
How can a rational number be written? Give examples.
Did ancient Greeks know about irrational numbers?
How can a rational number be expressed?
What does any fraction consist of?
Why is the set of rationals often denoted as a field Q?
What is Farey sequence?
Check your active vocabulary on the topic:
calculus measurement rational number irrational natural whole integer square number |
numerator denominator a set ratio sequence to enumerate perfect square |
fraction square root mathematician to accept existence to prove to disprove
|
Translate into English and be ready to give illustrative examples:
Обчислення Математик Приймати Квадратний корінь Дріб Квадрат цілого числа Ціле число
|
Множина Чисельник Довести Знаменник Спростувати Відношення, коефіцієнт Ряд, послідовність |
Натуральне число Раціональне число Вимірювання Іраціональне число Перераховувати Ціле число (+/ -) Існування |
Fill in the gaps using a word from the list:
Natural numbers Double numerator |
Measurement Negatives Fraction denominator |
Irrationals Whole Perfect squares represent |
Calculus is a theory of … .
The necessary for measuring numbers are the rationals and … .
1, 2, 3, 4, and so on are called the … .
If we include 0, we have the … numbers: 0, 1, 2, 3, and so on.
–1, –2, –3, and so on are the algebraic … of 1, 2, 3 and so on.
± ("plus or minus") is called the … sign.
The following are the square numbers, or the … : 1 4 9 16 25 36 49 64, and so on.
A rational number is a number that can be written as a simple … .
A rational number p/q is said to have … p and … q.
You can not … the square root of 2 as a fraction as it is irrational.
MODULE 4
Properties of rational numbers
Task 1
Solve the problems:
I am a fraction. I know I’m worth exactly as much as the number seven (I’m equal to it). My numerator is 21. What fraction am I?
There is a basket containing 5 apples, how do you divide the apples among 5 children so that each child has 1 apple while 1 apple remains in the basket?
Which 3 numbers have the same answer whether they’re added or multiplied together?
Task 2
Get ready for module text reading. Practice active vocabulary on the topic. First, read the words in the left column paying attention to their pronunciation. Then, find the Ukrainian equivalents in the right column. Spare column is left for your notes.
|
|
|
Task 3
Translate into English:
Ціла та дробова частина; у випадку з цілими числами; задача не має розв’ку; визначити найбільший спільний множник; скоротити дріб; цілі числа так само, як і дроби; виразити у формі дробу; виразити у формі раціонального числа; дозволити знайти розв'язок; привести до спільного знаменника; обидва числа; правильні та неправильні дроби; знайти вірну відповідь; нескоротний дріб; поділити на рівні частини; більший за 1; менший, ніж знаменник; рівний чисельнику; величина, рівна 1; відносно простий дріб.
Task 4
Translate into Ukrainian:
1. Even children of primary school can solve this problem. 2. To solve the problem you must find the number of equal parts into which the whole was divided. 3. It’s impossible to find the solution of this problem. 4. This problem is easily translated into the equation. 5. This is an indication that the set of rationals does not meet all our needs. 6. A rational number is a quotient of two integers p/q where q is not equal to 0. 7. The denominator of a simple fraction denotes the number of equal parts into which a whole is divided. 8. The numerator denotes how many of the parts into which a whole was divided are taken. 9. 0.5 is equal to ½. 10. 0.5
Task 5
Read the text and define the main properties of rationals.