
- •Навчальний посібник
- •First term
- •Second term
- •Mathematics as a science
- •Mathematics
- •Task 17
- •Isaak Newton
- •Age problem
- •Self-assessment Be ready to speak on the topic "Mathematics as an independent science" using the following as a plan:
- •Check your active vocabulary on the topic:
- •Translate into English and be ready to give illustrative examples:
- •Fill in the gaps using a word from the list:
- •Arithmetic operations
- •Four basic operations of arithmetic
- •Two Characteristics of Addition
- •Self-assessment
- •Rational numbers
- •Rational and irrational numbers
- •Rational and irrational numbers
- •What is a number that is not rational?
- •Self-assessment
- •Properties of rational numbers
- •Properties of rational numbers
- •Properties of rational numbers
- •Reciprocal Fractions
- •Reducing Fractions to Lowest Terms
- •A Visit to a Concert
- •Self-assessment
- •Geometry
- •Meaning of geometry
- •Points and Lines
- •The history of geometry
- •Strange figures.
- •Measure the water.
- •Self-assessment
- •Simple closed figures
- •Simple closed figures
- •Simple closed figures
- •Problems of Cosmic and Cosmetic Physics
- •How to find the hypotenuse
- •Geometry Challenges
- •Self-assessment
- •Functional organization of computer
- •Computers
- •An a is a b that c
- •Find the numbers
- •Hundreds and hundreds
- •Tasks for self-assessment
- •Computer programming
- •Now read the description below. Do you like it? Why/Why not?
- •Instruction, instruct, instructed, instructor
- •Programming languages
- •Testing the computer program
- •Genius’s answer
- •A witty answer
- •The oldest profession
- •Tasks for self-assessment
- •Additional texts for reading
- •Read the text and summarise the main ways of expressing numbers in English.
- •Expressing numbers in english
- •Expressing millions
- •Ways of expressing the number 0
- •Fractional numbers
- •Writing full stops and commas in numbers
- •A short introduction to the new math
- •Algorithm
- •Mathematical component of the curriculum
- •Some facts on the development of the number system
- •The game of chess
- •Computers in our life
- •Is "laptop" being phased out?
- •The Main Pieces of Hardware
- •Text 10
- •Programs and programming languages
- •Text 11
- •All about software Categories of applications software explained
- •Systems Software
- •Applications Software
- •All the Other 'Ware Terminology
- •Malware
- •Greyware
- •Text 12
- •Advantages and disadvantages of the internet
- •Advantages
- •Disadvantages
- •Text 13
- •Text 14
- •Thinking about what we’ve found
- •Meta-Web Information
- •Text 15
- •Computer-aided instruction
- •Text 16
- •Teacher training
- •Іменник Утворення множини іменників
- •Правила правопису множини іменників
- •Окремі випадки утворення множини іменників
- •Присвійний відмінок
- •Практичні завдання
- •Артикль
- •Вживання неозначеного артикля
- •Вживання означеного артикля
- •Відсутність артикля перед обчислюваними іменниками
- •Вживання артикля з власними іменниками
- •Практичні завдання
- •Прикметник
- •Практичні завдання
- •Числівник
- •Практичні завдання
- •Займенник Особові займенники
- •Присвійні займенники
- •Зворотні займенники
- •Вказівні займенники
- •Питальні займенники
- •Неозначені займенники
- •Кількісні займенники
- •Практичні завдання
- •Прийменник
- •Дієслово
- •Неозначені часи indefinite tenses
- •Теперішній неозначений час the present indefinite tense active
- •Вживання Present Indefinite Active
- •Майбутній неозначений час the future indefinite tense active
- •Практичні завдання
- •Did you have a meeting yesterday?
- •I had an exam last week.
- •I didn't have an exam last week. Did you?
- •Тривалі часи дієслова continuous tenses
- •Теперішній тривалий час The present continuous tense active
- •Минулий тривалий час The past continuous tense active
- •Майбутній тривалий час The future continuous tense active
- •Практичні завдання
- •Перфектні часи perfect tenses
- •Теперішній перфектний час The present perfect tense active
- •Минулий перфектний час The perfect past tense active
- •Майбутній перфектний час The future perfect tense active
- •Практичні завдання
- •Узгодження часів sequence of tenses
- •Практичні завдання
- •Модальні дієслова modal verbs
- •Практичні завдання
- •Типи питальних речень question types
- •Практичні завдання
- •Пасивний стан дієслова passive voice
- •Практичні завдання
- •Check yourself
- •Читання буквосполучень
- •Читання голосних буквосполучень
- •Читання деяких приголосних та їхніх сполучень
- •Irregular verbs
- •Indefinite Tenses
- •Continuous Tenses
- •Perfect Tenses
- •Perfect Continuous Tenses
- •List of Proper Names
- •Sources of used materials
- •Contents
Rational and irrational numbers
1)… is a theory of measurement. The 2) … for measuring numbers are the rationals and irrationals. But let us start at the beginning.
The following numbers of arithmetic are the counting-numbers or, as they are called, the 3) … numbers: 1, 2, 3, 4, and so on. If we include 0, we have the 4)… numbers: 0, 1, 2, 3, and so on. And if we include their algebraic negatives, we have the 5)… : 0, ±1, ±2, ±3, and so on. ± ("plus or minus") is called the double sign. The following are the square numbers, or the 6) … : 1 4 9 16 25 36 49 64, and so on. They are the numbers 1· 1, 2· 2, 3· 3, 4· 4, and so on.
A rational number is a number that can be written as a simple 7) … (or as a ratio). 5 can be represented as a 8) … or a quotient of 5 and 1 and so on. But the square 9) … of 2 cannot be written as a simple fraction. And there are many more such numbers, and because they are not rational they are called irrational.
The ancient Greek 10)… Pythagoras believed that all numbers were rational in other words could be written as a fraction, but one of his students Hippasus proved (using geometry, it is thought) that you could not represent the square root of 2 as a fraction, and so it was irrational.
However Pythagoras could not accept the existence of irrational numbers, because he believed that all numbers had perfect squares. But he could not disprove Hippasus' "irrational numbers" and so Hippasus was thrown overboard and drowned!
But nowadays we know that a rational number is a number that can be expressed as a fraction p/q where p and q are 11) … and q is not equal to 0. A rational number p/q is said to have 12) … p and 13) … q. Numbers that are not rational are called 14)… numbers. The real line consists of the 15) … of the rational and irrational numbers.
The set of all rational numbers is referred to as the "rationals," and forms a field that is denoted . Here, the symbol derives from the word 16) …, which means "the result of division", "ratio," and first appeared in Nicolas Bourbaki's "Algebra".
Examples of rational numbers include , 0, 1, 1/2, 22/7, 12345/67, and so on. Farey sequences provide a way of 17) … all rational numbers systematically.
Task 8
Translate into English:
1. Раціональні та ірраціональні числа необхідні нам для вимірювання предметів та речовин. 2. Квадрат цілого числа – це добуток від числа, помноженого на те саме число. 3. Показник степеня вказує на те, скільки разів слід помножити певне число на таке саме число. 4. Раціональне число – це число, що може бути представлене у вигляді простого дробу. 5. Вчитель попросив учнів довести теорему Піфагора. 6. Скільки способів доведення теореми Піфагора вам відомо? 7. Піфагор не зміг спростувати існування ірраціональних чисел. 8. Чим відомий Піфагор? Це видатний математик стародавньої Греції. 9. Простий дріб складається з чисельника та знаменника. 10. Знаменник вказує на те, на скільки частин поділене ціле число. Чисельник вказує на те, скільки таких частин ми взяли.
Task 9
Tell the class about rationals and irrationals using the following list as promts:
-
Measurement
Necessary
Counting numbers
Whole numbers
Integers
Double sign
Square numbers
Exponent
Simple fraction
Square root of 2
Irrationals
Pythagoras
Hyppasus proved
Accept existence
Thrown overboard
Numerator
Denominator
Real line
Set
Field
Q
Farey sequence
Task 10
Tell the class about rational and irrational numbers using the question list to the text as a plan.
Task 11
Prepare the reports on the following topics and be ready to present them in class:
Nicolas Bourbaki – a real or imaginary person?
What we know about Farey sequence and its author.
Pythagoras and his discoveries.
Task 12
Read the text and render it in English.