
- •Глава I Электрическое поле в вакууме
- •Краткий исторический обзор развития представлений о природе электричества и магнетизма[11]
- •Представления об электричестве и магнетизме в Древнем мире.
- •Период XVIII-XIX веков.
- •1.3. Вклад отечественных учёных.
- •Современный этап.
- •Тесты к лекции №1.
- •Заряд и поле. Закон Кулона. Напряженность поля[11]
- •2.1. Понятие электрического заряда и его свойства
- •2.2. Закон Кулона
- •2.3. Электрическое поле и его характеристики
- •Силовые линии
- •Опыт 2.3. Силовые линии электрического поля[8,9]
- •Тесты к лекции №2.
- •Теорема Остроградского – Гаусса и ее применение[11]
- •3.1. Основные определения
- •3.2. Теорема Остроградского-Гаусса
- •3.3. Применение теоремы Остроградского – Гаусса
- •3.3.1. Поле заряженной плоскости.
- •3.3.2. Поле разноименных плоскостей
- •3.3.4. Поле заряженной сферы.
- •3.3.5. Поле заряженного шара.
- •Аналогия и различия между электростатическим и гравитационным полями
- •Тесты к лекции №3.
- •Работа электрического поля по перемещению заряда. Потенциал. Потенциальный характер электростатического поля[11]
- •4.1. Вывод формулы для расчета работы сил поля при перемещении заряда
- •Понятие потенциала, потенциальный характер электростатического поля
- •4.3. Связь между напряженностью и потенциалом
- •4.4. Потенциал поля плоского конденсатора, заряженной нити, цилиндрического и сферического конденсаторов.
- •Тесты к лекции №4.
- •Тесты к главе №1.
- •Глава 2 Проводники и диэлектрики в электрическом поле
- •Проводники в электрическом поле. Диэлектрики. Поляризация диэлектриков. Векторы поляризации и электростатической индукции[11]
- •5.1. Проводники в электрическом поле
- •5.2. Диэлектрики
- •5.3. Векторы поляризации и электростатической индукции
- •Тесты к лекции №5.
- •Электроемкость. Конденсаторы и их применение. Энергия и плотность энергии заряженного конденсатора[11]
- •6.1. Электроемкость
- •6.2. Конденсаторы и их применение
- •6.3. Энергия и плотность энергии заряженного конденсатора
- •Тесты к лекции №6.
- •Тесты к главе №2.
- •Глава 3 Электрический ток в различных средах
- •Основные характеристики электрического тока. Закон Ома для участка цепи. Сторонние силы. Закон Ома для полной цепи[11]
- •7.1. Основные характеристики электрического тока
- •7.2. Закон Ома для участка цепи
- •7.3. Сторонние силы. Закон Ома для полной цепи
- •Тесты к лекции №7
- •Сопротивление проводников. Сверхпроводимость. Электронная теория проводимости металлов. Законы Ома и Джоуля – Ленца в дифференциальной форме[11]
- •8.1. Сопротивление проводников
- •8.2. Сверхпроводимость
- •8.3. Электронная теория проводимости металлов
- •8.4. Законы Ома и Джоуля - Ленца в дифференциальной форме
- •Сверхпроводники 1-го и 2-го рода.
- •Эффект Мейснера.
- •Гроб Мухаммеда.
- •Теория бкш. Описание.
- •Математический аппарат.
- •Применение явления сверхпроводимости.
- •Тесты к лекции №8
- •Работа и мощность электрического тока. Закон Джоуля - Ленца. Разветвление цепи. Правила Кирхгофа[11]
- •9.1. Работа и мощность электрического тока. Закон Джоуля - Ленца
- •9.2. Разветвление цепи
- •9.3. Правила Кирхгофа
- •Тесты к лекции №9.
- •Понятие зоной теории проводимости. Контактная разность потенциалов. Термоэлектрические явления и их применение[11]
- •10.1. Понятие о зонной теории проводимости
- •10.2. Контактная разность потенциалов[3]
- •10.3. Термоэлектрические явления и их применение
- •Тесты к лекции №10.
- •Электролитическая диссоциация. Проводимость электролитов. Законы Фарадея для электролиза. Определение заряда иона. Техническое применение электролиза[11]
- •11.1. Электролитическая диссоциация
- •11.2. Проводимость электролитов
- •11.3. Законы Фарадея для электролиза
- •Определение заряда иона
- •Техническое применение электролиза
- •Тесты к лекции №11.
- •Процессы ионизации и рекомбинации. Несамостоятельный и самостоятельный разряды в газе. Виды разрядов. Применение газовых разрядов[11]
- •12.1. Процессы ионизации и рекомбинации. Несамостоятельный и самостоятельный разряды в газе
- •12.2. Виды разрядов. Применение газовых разрядов
- •Тесты к лекции №12.
- •Понятие о плазме. Катодные и каналовые лучи. Термоэлектронная эмиссия. Электронные лампы и их применение.[11]
- •13.1. Понятие о плазме
- •13.2. Термоэлектронная эмиссия
- •13.3. Электронные лампы и их применение
- •Тесты к лекции №13
- •Собственная и примесная проводимость полупроводников, ее зависимость от температуры и освещенности. Полупроводниковые диоды и транзисторы[11]
- •14.1. Собственная и примесная проводимость полупроводников, ее зависимость от температуры и освещенности
- •14.2. Полупроводниковые диоды и транзисторы
- •Тесты к лекции №14
- •Тесты к главе №3.
- •Глава 4 Магнитное поле в вакууме и веществе
- •15.2. Магнитное поле. Индукция и напряженность магнитного поля
- •15.3. Виток с током в магнитном поле
- •Опыт 15.3.Демонстрация спектров магнитного поля токам[8,9].
- •15.4. Закон Био - Савара - Лапласа. Магнитное поле прямого, кругового и соленоидального токов.
- •Тесты к лекции №15
- •16.1. Вихревой характер магнитного поля. Циркуляция вектора индукции магнитного поля. Магнитный поток
- •16.2. Сила Ампера
- •16.3. Работа по перемещению проводника с током в магнитном поле.
- •16.4. Сила Лоренца
- •16.5.Определение удельного заряда электрона
- •Тесты к лекции №16
- •Магнетики. Намагниченность. Связь индукции и напряженности магнитного поля в магнетике. Магнитная проницаемость и восприимчивость. Магнитомеханические явления[11]
- •Магнитомеханические явления
- •Тесты к лекции №17
- •Понятие о диа-, пара- и ферромагнетиках. Доменная структура ферромагнетиков. Магнитный гистерезис. Работы Столетова. Точка Кюри. Магнитные материалы и их применение[11]
- •18.1. Понятие о диа-, пара- и ферромагнетиках. Доменная структура магнетиков
- •18.2. Магнитный гистерезис. Работы а.Г. Столетова. Точка Кюри
- •18.3. Магнитные материалы и их применение
- •Тесты к лекции №18
- •Тесты к главе № 4.
- •Глава 5 Электромагнитные явления
- •Электромагнитная индукция. Опыты, закон индукции Фарадея и правило Ленца. Самоиндукция и взаимоиндукция. Энергия и плотность энергии магнитного поля[11]
- •19.1. Электромагнитная индукция
- •19.2. Самоиндукция и взаимоиндукция
- •19.3. Энергия и плотность энергии магнитного поля
- •Тесты к лекции №19.
- •Получение переменной эдс
- •20.2. Сопротивление, индуктивность и емкость цепи переменного тока. Закон Ома для цепей переменного тока
- •4.Последовательное соединение активного сопротивления, индуктивности и емкости в цепи переменного тока
- •Резонанс в последовательной и параллельной цепи
- •Проблема передачи электроэнергии на расстояние, трансформатор
- •Тесты к лекции №20.
- •21.1. Электрический колебательный контур. Собственные колебания. Формула Томсона
- •Затухающие колебания. Вынужденные колебания в контуре. Резонанс
- •21.3. Электрические автоколебания. Автогенератор на вакуумном триоде и биполярном транзисторе
- •Тесты к лекции №21
- •Вихревое электрическое поле. Ток смещения. Уравнения Максвелла в интегральной форме. Плоские электромагнитные волны в вакууме, скорость их распространения[11]
- •22.2 Уравнения Максвелла в интегральной форме.
- •Плоские электромагнитные волны в вакууме, скорость их распространения
- •Тесты к лекции №22
- •Излучение электромагнитных волн. Опыты Герца, вибратор Герца. Изобретение радиосвязи а.С. Поповым. Принцип радиосвязи и радиолокации[11]
- •Излучение электромагнитных волн
- •23.2. Опыты Герца, вибратор Герца
- •23.3. Изобретение радиосвязи а.С. Поповым. Принцип радиосвязи и радиолокации
- •Тесты к лекции №23
- •Тесты к главе №5.
- •Ключи. Тесты к Лекциям.
- •Тесты к главам.
4.Последовательное соединение активного сопротивления, индуктивности и емкости в цепи переменного тока
Схема:
Рис. 20.15.
Запишем второй закон Кирхгофа для этой цепи. Результирующее напряжение равно:
U=Ur+UL+UC. (20.13)
Ток i=ir=iL=iC. Опорный вектор – ток.
Рис. 20.16.
Из векторной диаграммы следует:
U2=U2r+(UL+UC)2 или
(IR)2=(Ir)2+I2(XL-XC)2,
R2=r2+(XL-XC)=Z, тогда
(20.14)
- закон Ома для цепи переменного тока,
содержащей активное сопротивление,
индуктивность и емкость.
Резонанс в последовательной и параллельной цепи
Рассмотрим схему последовательного соединения активного сопротивления, индуктивности и емкости в цепи переменного тока (рис. 20.15).
Определим угол сдвига фаз:
(20.15)
XL>XC – в цепи преобладает индуктивная нагрузка (>0); напряжение опережает ток по фазе.
XL<XC – в цепи преобладает емкостная нагрузка (<0); напряжение отстает от тока по фазе.
XL=XC – емкостная и индуктивная нагрузки равны (=0); напряжение совпадает с током по фазе. При этом из закона Ома следует, что ток в цепи будет максимальным (резонанс напряжений).
Условия резонанса напряжений:
XL=XC
(20.16)
Резонанса можно достичь двумя способами:
Параметрический резонанс (меняются значения L и C).
Частотный резонанс (меняется частота колебаний):
тогда период:
Параллельный резонанс
Схема:
Рис. 20.17.
Векторная диаграмма:
Рис. 20.18.
Запишем второй закон Кирхгофа для этой цепи.
Ток в неразветвленной части цепи равен:
i=iC+iL,r. (20.19)
Напряжение:
UC=UL+Ur. (20.20)
Опорный вектор – напряжение.
Из векторной диаграммы видно:
- проводимости всей цепи и её элементов.
(20.21)
- закон Ома для параллельной цепи,
содержащей сопротивление, индуктивность
и емкость.
Определим угол сдвига фаз:
(20.22)
bL>bC – проводимость индуктивной ветви больше проводимости емкостной (<0). Напряжение опережает ток по фазе.
bL<bC – проводимость индуктивной ветви меньше проводимости емкостной (>0). Напряжение отстает от тока по фазе.
bL=bC – проводимости равны. (=0). Напряжение совпадает с током по фазе. При этом из закона Ома следует, что ток в цепи будет минимальным (резонанс токов).
Условие резонанса токов:
Проблема передачи электроэнергии на расстояние, трансформатор
Для передачи электроэнергии на большие расстояния от источника к потребителю служат линии электропередач (ЛЭП). При этом приходится решать ряд научно-технических задач, одна из которых состоит в уменьшении потерь электроэнергии при ее передаче к потребителю. Эта задача решается путем трансформации напряжения. Трансформация напряжения заключается в изменении величины передаваемого напряжения без существенного изменения мощности электрического тока. Для этой цели служит устройство, называемое трансформатором.
В основе работы трансформатора лежит явление электромагнитной индукции. Простейший трансформатор состоит из сердечника и двух намотанных на него обмоток (катушек) – первичной и вторичной (рис. 20.19). Сердечник, в свою очередь состоит из тонких плотно склеенных между собой листов электротехнической стали и служит для передачи магнитного потока от первичной катушки к вторичной. Электротехническая сталь обладает способностью к быстрому перемагничиванию без насыщения и называется магнитомягкой.
Рис. 20.19.
Согласно закону электромагнитной индукции Фарадея ЭДС индукции Е1 и Е2, создаваемые в первичной и вторичной катушках выражаются формулами:
где w1 и w2 – число витков в первичной и вторичной катушках трансформатора соответственно.
По второму правилу Кирхгофа напряжения на первичной и вторичной обмотках
Тогда получим
(20.25)
- коэффициент трансформации.
В зависимости от величины К12 различают повышающие и понижающие трансформаторы. Например, при передаче электроэнергии от электростанции в ЛЭП используются повышающие трансформаторы и напряжения в ЛЭП составляют тысячи и миллионы вольт (отсюда и названия ЛЭП – 500 и т.д.) (рис. 20.19). Наоборот, т.к. бытовые приборы (потребители электроэнергии) рассчитаны на низкое напряжение (220 В) необходимо последовательно понизить высокое напряжение в ЛЭП через сеть распределительных подстанций районного и местного значения до напряжения, используемого потребителями электроэнергии.
Рис. 20.20[3] .