
- •Глава I Электрическое поле в вакууме
- •Краткий исторический обзор развития представлений о природе электричества и магнетизма[11]
- •Представления об электричестве и магнетизме в Древнем мире.
- •Период XVIII-XIX веков.
- •1.3. Вклад отечественных учёных.
- •Современный этап.
- •Тесты к лекции №1.
- •Заряд и поле. Закон Кулона. Напряженность поля[11]
- •2.1. Понятие электрического заряда и его свойства
- •2.2. Закон Кулона
- •2.3. Электрическое поле и его характеристики
- •Силовые линии
- •Опыт 2.3. Силовые линии электрического поля[8,9]
- •Тесты к лекции №2.
- •Теорема Остроградского – Гаусса и ее применение[11]
- •3.1. Основные определения
- •3.2. Теорема Остроградского-Гаусса
- •3.3. Применение теоремы Остроградского – Гаусса
- •3.3.1. Поле заряженной плоскости.
- •3.3.2. Поле разноименных плоскостей
- •3.3.4. Поле заряженной сферы.
- •3.3.5. Поле заряженного шара.
- •Аналогия и различия между электростатическим и гравитационным полями
- •Тесты к лекции №3.
- •Работа электрического поля по перемещению заряда. Потенциал. Потенциальный характер электростатического поля[11]
- •4.1. Вывод формулы для расчета работы сил поля при перемещении заряда
- •Понятие потенциала, потенциальный характер электростатического поля
- •4.3. Связь между напряженностью и потенциалом
- •4.4. Потенциал поля плоского конденсатора, заряженной нити, цилиндрического и сферического конденсаторов.
- •Тесты к лекции №4.
- •Тесты к главе №1.
- •Глава 2 Проводники и диэлектрики в электрическом поле
- •Проводники в электрическом поле. Диэлектрики. Поляризация диэлектриков. Векторы поляризации и электростатической индукции[11]
- •5.1. Проводники в электрическом поле
- •5.2. Диэлектрики
- •5.3. Векторы поляризации и электростатической индукции
- •Тесты к лекции №5.
- •Электроемкость. Конденсаторы и их применение. Энергия и плотность энергии заряженного конденсатора[11]
- •6.1. Электроемкость
- •6.2. Конденсаторы и их применение
- •6.3. Энергия и плотность энергии заряженного конденсатора
- •Тесты к лекции №6.
- •Тесты к главе №2.
- •Глава 3 Электрический ток в различных средах
- •Основные характеристики электрического тока. Закон Ома для участка цепи. Сторонние силы. Закон Ома для полной цепи[11]
- •7.1. Основные характеристики электрического тока
- •7.2. Закон Ома для участка цепи
- •7.3. Сторонние силы. Закон Ома для полной цепи
- •Тесты к лекции №7
- •Сопротивление проводников. Сверхпроводимость. Электронная теория проводимости металлов. Законы Ома и Джоуля – Ленца в дифференциальной форме[11]
- •8.1. Сопротивление проводников
- •8.2. Сверхпроводимость
- •8.3. Электронная теория проводимости металлов
- •8.4. Законы Ома и Джоуля - Ленца в дифференциальной форме
- •Сверхпроводники 1-го и 2-го рода.
- •Эффект Мейснера.
- •Гроб Мухаммеда.
- •Теория бкш. Описание.
- •Математический аппарат.
- •Применение явления сверхпроводимости.
- •Тесты к лекции №8
- •Работа и мощность электрического тока. Закон Джоуля - Ленца. Разветвление цепи. Правила Кирхгофа[11]
- •9.1. Работа и мощность электрического тока. Закон Джоуля - Ленца
- •9.2. Разветвление цепи
- •9.3. Правила Кирхгофа
- •Тесты к лекции №9.
- •Понятие зоной теории проводимости. Контактная разность потенциалов. Термоэлектрические явления и их применение[11]
- •10.1. Понятие о зонной теории проводимости
- •10.2. Контактная разность потенциалов[3]
- •10.3. Термоэлектрические явления и их применение
- •Тесты к лекции №10.
- •Электролитическая диссоциация. Проводимость электролитов. Законы Фарадея для электролиза. Определение заряда иона. Техническое применение электролиза[11]
- •11.1. Электролитическая диссоциация
- •11.2. Проводимость электролитов
- •11.3. Законы Фарадея для электролиза
- •Определение заряда иона
- •Техническое применение электролиза
- •Тесты к лекции №11.
- •Процессы ионизации и рекомбинации. Несамостоятельный и самостоятельный разряды в газе. Виды разрядов. Применение газовых разрядов[11]
- •12.1. Процессы ионизации и рекомбинации. Несамостоятельный и самостоятельный разряды в газе
- •12.2. Виды разрядов. Применение газовых разрядов
- •Тесты к лекции №12.
- •Понятие о плазме. Катодные и каналовые лучи. Термоэлектронная эмиссия. Электронные лампы и их применение.[11]
- •13.1. Понятие о плазме
- •13.2. Термоэлектронная эмиссия
- •13.3. Электронные лампы и их применение
- •Тесты к лекции №13
- •Собственная и примесная проводимость полупроводников, ее зависимость от температуры и освещенности. Полупроводниковые диоды и транзисторы[11]
- •14.1. Собственная и примесная проводимость полупроводников, ее зависимость от температуры и освещенности
- •14.2. Полупроводниковые диоды и транзисторы
- •Тесты к лекции №14
- •Тесты к главе №3.
- •Глава 4 Магнитное поле в вакууме и веществе
- •15.2. Магнитное поле. Индукция и напряженность магнитного поля
- •15.3. Виток с током в магнитном поле
- •Опыт 15.3.Демонстрация спектров магнитного поля токам[8,9].
- •15.4. Закон Био - Савара - Лапласа. Магнитное поле прямого, кругового и соленоидального токов.
- •Тесты к лекции №15
- •16.1. Вихревой характер магнитного поля. Циркуляция вектора индукции магнитного поля. Магнитный поток
- •16.2. Сила Ампера
- •16.3. Работа по перемещению проводника с током в магнитном поле.
- •16.4. Сила Лоренца
- •16.5.Определение удельного заряда электрона
- •Тесты к лекции №16
- •Магнетики. Намагниченность. Связь индукции и напряженности магнитного поля в магнетике. Магнитная проницаемость и восприимчивость. Магнитомеханические явления[11]
- •Магнитомеханические явления
- •Тесты к лекции №17
- •Понятие о диа-, пара- и ферромагнетиках. Доменная структура ферромагнетиков. Магнитный гистерезис. Работы Столетова. Точка Кюри. Магнитные материалы и их применение[11]
- •18.1. Понятие о диа-, пара- и ферромагнетиках. Доменная структура магнетиков
- •18.2. Магнитный гистерезис. Работы а.Г. Столетова. Точка Кюри
- •18.3. Магнитные материалы и их применение
- •Тесты к лекции №18
- •Тесты к главе № 4.
- •Глава 5 Электромагнитные явления
- •Электромагнитная индукция. Опыты, закон индукции Фарадея и правило Ленца. Самоиндукция и взаимоиндукция. Энергия и плотность энергии магнитного поля[11]
- •19.1. Электромагнитная индукция
- •19.2. Самоиндукция и взаимоиндукция
- •19.3. Энергия и плотность энергии магнитного поля
- •Тесты к лекции №19.
- •Получение переменной эдс
- •20.2. Сопротивление, индуктивность и емкость цепи переменного тока. Закон Ома для цепей переменного тока
- •4.Последовательное соединение активного сопротивления, индуктивности и емкости в цепи переменного тока
- •Резонанс в последовательной и параллельной цепи
- •Проблема передачи электроэнергии на расстояние, трансформатор
- •Тесты к лекции №20.
- •21.1. Электрический колебательный контур. Собственные колебания. Формула Томсона
- •Затухающие колебания. Вынужденные колебания в контуре. Резонанс
- •21.3. Электрические автоколебания. Автогенератор на вакуумном триоде и биполярном транзисторе
- •Тесты к лекции №21
- •Вихревое электрическое поле. Ток смещения. Уравнения Максвелла в интегральной форме. Плоские электромагнитные волны в вакууме, скорость их распространения[11]
- •22.2 Уравнения Максвелла в интегральной форме.
- •Плоские электромагнитные волны в вакууме, скорость их распространения
- •Тесты к лекции №22
- •Излучение электромагнитных волн. Опыты Герца, вибратор Герца. Изобретение радиосвязи а.С. Поповым. Принцип радиосвязи и радиолокации[11]
- •Излучение электромагнитных волн
- •23.2. Опыты Герца, вибратор Герца
- •23.3. Изобретение радиосвязи а.С. Поповым. Принцип радиосвязи и радиолокации
- •Тесты к лекции №23
- •Тесты к главе №5.
- •Ключи. Тесты к Лекциям.
- •Тесты к главам.
19.2. Самоиндукция и взаимоиндукция
Рассмотрим явление самоиндукции. Так как поток рассеяния не влияет на изменение магнитного поля в самом проводнике, то эту величину можно не учитывать, т.е.:
Рассмотрим первое полученное слагаемое. Если в проводнике ток не изменяется, т.е. i=const, то переменной величиной является индуктивность. Для второго слагаемого L=const, а изменяется сила тока в проводнике.
Самоиндукция – это явление возникновения индукционного тока в самом проводнике под действием изменяющегося собственного магнитного поля:
Явление взаимоиндукции состоит в возникновении ЭДС в одной цепи под действием изменения тока в другой.
Рассмотрим два, близко расположенных друг к другу контура 1 и 2 (рис.19.8). Если в контуре 1 течет ток силы I1, он создает через контур 2 пропорциональный I1 полный магнитный поток:
2=L21I1. (19.7)
(поле, создающее этот поток, изображено на рисунке сплошными линиями). При изменениях тока I1 в контуре 2 индуцируется ЭДС:
(мы предполагаем, что ферромагнетиков вблизи контуров нет).
Рис. 19.8 [3].
Аналогично, при протекании в контуре 2 тока силы I2 возникает сцепленный с контуром 1 поток:
1 =L12I2 (19.9)
(поле, создающее этот ток, изображено пунктирными линиями).
При изменениях тока I2 в контуре 1 индуцируется ЭДС:
Контуры 1 и 2 называются связанными, а явление возникновения ЭДС в одном из контуров при изменениях силы тока в другом называется взаимной индукцией.
Коэффициенты пропорциональности L12 и L21 называются коэффициентами взаимной индукции контуров. Соответствующий расчет дает, что в отсутствие ферромагнетиков эти коэффициенты всегда равны друг другу, т.е.:
L12 = L21. (19.11)
Величина коэффициентов взаимной индукции зависит от их формы, размеров и взаимного расположения контуров, а также магнитной проницаемости среды, окружающей контуры. Коэффициенты взаимной индукции измеряются в тех же единицах, что и индуктивность L.
19.3. Энергия и плотность энергии магнитного поля
Для вывода формулы энергии магнитного поля рассмотрим соленоид, по виткам которого идет ток. Тогда в объеме соленоида и вокруг него возникает магнитное поле (рис. 19.9).
Рис. 19.9.
При изменении магнитного потока d, вызванного изменением силы тока в соленоиде на di, совершается работа:
.
(19.12)
Т.к.
,
то
.
Проинтегрировав, получим:
.
(19.13)
По закону сохранения и превращения энергии совершенная работа равна энергии магнитного поля соленоида, т.е. :
,
Используя формулу для индуктивности соленоида для энергии магнитного поля, имеем:
,
(19.14)
где V=lS- объем соленоида.
Тогда плотность энергии магнитного поля:
.
В изотропной среде вектора B и H коллинеарные.
Для анизотропной среды плотность энергии магнитного поля:
.
(19.15)
Тесты к лекции №19.
Тест 19.1. Дайте определение индукционного тока:
ток, возникающий в замкнутом проводящем контуре при изменении потока магнитной индукции, пронизывающего этот контур
ток, возникающий в незамкнутом контуре при изменении потока магнитной индукции, пронизывающего этот контур
ток, возникающий в замкнутом проводящем контуре под воздействием магнитного поля
ток, возникающий в замкнутом контуре под воздействием электромагнитной индукции
ток, возникающий в замкнутом контуре под воздействием постоянного магнитного поля
Тест 19.2. Формулировка «Электромагнитная индукция в контуре численно равна и противоположна по знаку скорости изменения электромагнитного потока сквозь поверхность, ограниченную этим контуром» - это…
сила Ампера
правило Ленца
закон Фарадея
закон Ома
закон Дюлонга-Пти
Тест 19.3. Что является энергетической мерой индуцированного электрического поля?
сила Лоренца
индукционный ток
ЭДС
элементарный электрический заряд
плотность тока
Тест 19.4. В каких единицах измеряется ЭДС электромагнитной индукции?
Вольт
Ватт
Ампер
Вебер
Генри
Тест 19.5. Что является причиной возникновения индукционного тока?
сила Лоренца
сила Фарадея
сила Ньютона
сила тяжести
изменяющееся магнитное поле
Получение переменной ЭДС. Сопротивление, индуктивность и емкость в цепи переменного тока. Закон Ома для цепей переменного тока. Резонанс в последовательной и параллельной цепи. Проблема передачи электроэнергии на расстояние, трансформатор[11]
Получение переменной ЭДС.
Сопротивление, индуктивность и емкость в цепи переменного тока. Закон Ома для цепей переменного тока.
20.3. Резонанс в последовательной и параллельной цепи.
20.4. Проблема передачи электроэнергии на расстояние, трансформатор.