
- •Глава I Электрическое поле в вакууме
- •Краткий исторический обзор развития представлений о природе электричества и магнетизма[11]
- •Представления об электричестве и магнетизме в Древнем мире.
- •Период XVIII-XIX веков.
- •1.3. Вклад отечественных учёных.
- •Современный этап.
- •Тесты к лекции №1.
- •Заряд и поле. Закон Кулона. Напряженность поля[11]
- •2.1. Понятие электрического заряда и его свойства
- •2.2. Закон Кулона
- •2.3. Электрическое поле и его характеристики
- •Силовые линии
- •Опыт 2.3. Силовые линии электрического поля[8,9]
- •Тесты к лекции №2.
- •Теорема Остроградского – Гаусса и ее применение[11]
- •3.1. Основные определения
- •3.2. Теорема Остроградского-Гаусса
- •3.3. Применение теоремы Остроградского – Гаусса
- •3.3.1. Поле заряженной плоскости.
- •3.3.2. Поле разноименных плоскостей
- •3.3.4. Поле заряженной сферы.
- •3.3.5. Поле заряженного шара.
- •Аналогия и различия между электростатическим и гравитационным полями
- •Тесты к лекции №3.
- •Работа электрического поля по перемещению заряда. Потенциал. Потенциальный характер электростатического поля[11]
- •4.1. Вывод формулы для расчета работы сил поля при перемещении заряда
- •Понятие потенциала, потенциальный характер электростатического поля
- •4.3. Связь между напряженностью и потенциалом
- •4.4. Потенциал поля плоского конденсатора, заряженной нити, цилиндрического и сферического конденсаторов.
- •Тесты к лекции №4.
- •Тесты к главе №1.
- •Глава 2 Проводники и диэлектрики в электрическом поле
- •Проводники в электрическом поле. Диэлектрики. Поляризация диэлектриков. Векторы поляризации и электростатической индукции[11]
- •5.1. Проводники в электрическом поле
- •5.2. Диэлектрики
- •5.3. Векторы поляризации и электростатической индукции
- •Тесты к лекции №5.
- •Электроемкость. Конденсаторы и их применение. Энергия и плотность энергии заряженного конденсатора[11]
- •6.1. Электроемкость
- •6.2. Конденсаторы и их применение
- •6.3. Энергия и плотность энергии заряженного конденсатора
- •Тесты к лекции №6.
- •Тесты к главе №2.
- •Глава 3 Электрический ток в различных средах
- •Основные характеристики электрического тока. Закон Ома для участка цепи. Сторонние силы. Закон Ома для полной цепи[11]
- •7.1. Основные характеристики электрического тока
- •7.2. Закон Ома для участка цепи
- •7.3. Сторонние силы. Закон Ома для полной цепи
- •Тесты к лекции №7
- •Сопротивление проводников. Сверхпроводимость. Электронная теория проводимости металлов. Законы Ома и Джоуля – Ленца в дифференциальной форме[11]
- •8.1. Сопротивление проводников
- •8.2. Сверхпроводимость
- •8.3. Электронная теория проводимости металлов
- •8.4. Законы Ома и Джоуля - Ленца в дифференциальной форме
- •Сверхпроводники 1-го и 2-го рода.
- •Эффект Мейснера.
- •Гроб Мухаммеда.
- •Теория бкш. Описание.
- •Математический аппарат.
- •Применение явления сверхпроводимости.
- •Тесты к лекции №8
- •Работа и мощность электрического тока. Закон Джоуля - Ленца. Разветвление цепи. Правила Кирхгофа[11]
- •9.1. Работа и мощность электрического тока. Закон Джоуля - Ленца
- •9.2. Разветвление цепи
- •9.3. Правила Кирхгофа
- •Тесты к лекции №9.
- •Понятие зоной теории проводимости. Контактная разность потенциалов. Термоэлектрические явления и их применение[11]
- •10.1. Понятие о зонной теории проводимости
- •10.2. Контактная разность потенциалов[3]
- •10.3. Термоэлектрические явления и их применение
- •Тесты к лекции №10.
- •Электролитическая диссоциация. Проводимость электролитов. Законы Фарадея для электролиза. Определение заряда иона. Техническое применение электролиза[11]
- •11.1. Электролитическая диссоциация
- •11.2. Проводимость электролитов
- •11.3. Законы Фарадея для электролиза
- •Определение заряда иона
- •Техническое применение электролиза
- •Тесты к лекции №11.
- •Процессы ионизации и рекомбинации. Несамостоятельный и самостоятельный разряды в газе. Виды разрядов. Применение газовых разрядов[11]
- •12.1. Процессы ионизации и рекомбинации. Несамостоятельный и самостоятельный разряды в газе
- •12.2. Виды разрядов. Применение газовых разрядов
- •Тесты к лекции №12.
- •Понятие о плазме. Катодные и каналовые лучи. Термоэлектронная эмиссия. Электронные лампы и их применение.[11]
- •13.1. Понятие о плазме
- •13.2. Термоэлектронная эмиссия
- •13.3. Электронные лампы и их применение
- •Тесты к лекции №13
- •Собственная и примесная проводимость полупроводников, ее зависимость от температуры и освещенности. Полупроводниковые диоды и транзисторы[11]
- •14.1. Собственная и примесная проводимость полупроводников, ее зависимость от температуры и освещенности
- •14.2. Полупроводниковые диоды и транзисторы
- •Тесты к лекции №14
- •Тесты к главе №3.
- •Глава 4 Магнитное поле в вакууме и веществе
- •15.2. Магнитное поле. Индукция и напряженность магнитного поля
- •15.3. Виток с током в магнитном поле
- •Опыт 15.3.Демонстрация спектров магнитного поля токам[8,9].
- •15.4. Закон Био - Савара - Лапласа. Магнитное поле прямого, кругового и соленоидального токов.
- •Тесты к лекции №15
- •16.1. Вихревой характер магнитного поля. Циркуляция вектора индукции магнитного поля. Магнитный поток
- •16.2. Сила Ампера
- •16.3. Работа по перемещению проводника с током в магнитном поле.
- •16.4. Сила Лоренца
- •16.5.Определение удельного заряда электрона
- •Тесты к лекции №16
- •Магнетики. Намагниченность. Связь индукции и напряженности магнитного поля в магнетике. Магнитная проницаемость и восприимчивость. Магнитомеханические явления[11]
- •Магнитомеханические явления
- •Тесты к лекции №17
- •Понятие о диа-, пара- и ферромагнетиках. Доменная структура ферромагнетиков. Магнитный гистерезис. Работы Столетова. Точка Кюри. Магнитные материалы и их применение[11]
- •18.1. Понятие о диа-, пара- и ферромагнетиках. Доменная структура магнетиков
- •18.2. Магнитный гистерезис. Работы а.Г. Столетова. Точка Кюри
- •18.3. Магнитные материалы и их применение
- •Тесты к лекции №18
- •Тесты к главе № 4.
- •Глава 5 Электромагнитные явления
- •Электромагнитная индукция. Опыты, закон индукции Фарадея и правило Ленца. Самоиндукция и взаимоиндукция. Энергия и плотность энергии магнитного поля[11]
- •19.1. Электромагнитная индукция
- •19.2. Самоиндукция и взаимоиндукция
- •19.3. Энергия и плотность энергии магнитного поля
- •Тесты к лекции №19.
- •Получение переменной эдс
- •20.2. Сопротивление, индуктивность и емкость цепи переменного тока. Закон Ома для цепей переменного тока
- •4.Последовательное соединение активного сопротивления, индуктивности и емкости в цепи переменного тока
- •Резонанс в последовательной и параллельной цепи
- •Проблема передачи электроэнергии на расстояние, трансформатор
- •Тесты к лекции №20.
- •21.1. Электрический колебательный контур. Собственные колебания. Формула Томсона
- •Затухающие колебания. Вынужденные колебания в контуре. Резонанс
- •21.3. Электрические автоколебания. Автогенератор на вакуумном триоде и биполярном транзисторе
- •Тесты к лекции №21
- •Вихревое электрическое поле. Ток смещения. Уравнения Максвелла в интегральной форме. Плоские электромагнитные волны в вакууме, скорость их распространения[11]
- •22.2 Уравнения Максвелла в интегральной форме.
- •Плоские электромагнитные волны в вакууме, скорость их распространения
- •Тесты к лекции №22
- •Излучение электромагнитных волн. Опыты Герца, вибратор Герца. Изобретение радиосвязи а.С. Поповым. Принцип радиосвязи и радиолокации[11]
- •Излучение электромагнитных волн
- •23.2. Опыты Герца, вибратор Герца
- •23.3. Изобретение радиосвязи а.С. Поповым. Принцип радиосвязи и радиолокации
- •Тесты к лекции №23
- •Тесты к главе №5.
- •Ключи. Тесты к Лекциям.
- •Тесты к главам.
Глава 5 Электромагнитные явления
Электромагнитная индукция. Опыты, закон индукции Фарадея и правило Ленца. Самоиндукция и взаимоиндукция. Энергия и плотность энергии магнитного поля.
Получение переменной ЭДС. Сопротивление, индуктивность и емкость и цепи переменного тока. Закон Ома для цепей переменного тока. Резонанс в последовательной и параллельной цепи. Проблема передачи электроэнергии на расстояние, трансформатор.
Электрический колебательный контур. Собственные колебания. Формула Томсона. Затухающие колебания. Вынужденные колебания в контуре. Резонанс. Электрические автоколебания. Автогенератор на вакуумном триоде и биполярном транзисторе.
Вихревое электрическое поле. Ток смещения. Уравнения Максвелла в интегральной форме. Плоские электромагнитные волны в вакууме, скорость их распространения.
Излучение электромагнитных волн. Опыты Герца, вибратор Герца. Изобретение радиосвязи А.С. Поповым. Принцип радиосвязи и радиолокации.
Электромагнитная индукция. Опыты, закон индукции Фарадея и правило Ленца. Самоиндукция и взаимоиндукция. Энергия и плотность энергии магнитного поля[11]
19.1. Электромагнитная индукция
Изменяющееся магнитное поле вызывает появление ЭДС индукции εинд. Это явление Фарадей назвал электромагнитной индукцией. Под влиянием ЭДС индукции в замкнутом проводнике возникает электрический ток.
Опыт 19.1.Явление электромагнитной индукции[8.9]
Оборудование:
Гальванометр от демонстрационного вольтметра.
Амперметр демонстрационный.
Магнит дугообразный.
Магнит прямой.
Трансформатор универсальный.
Реостат на 50 Ом.
Выключатель демонстрационный.
Штатив универсальный.
Батарея аккумуляторов.
Провода соединительные.
Ящик - подставка.
Рис. 19.1.
Рис. 19.2.
Рис. 19.3.
Ход работы.
1.Возьмем соленоид, соединенный с гальванометром , и будем вдвигать в него постоянный магнит. Оказывается, что при движении магнита стрелка гальванометра отклоняется. Если же магнит останавливается, то стрелка гальванометра возвращается в нулевое положение. То же самое получается при выдвижении магнита из соленоида или при надевании соленоида на неподвижный магнит. Такие опыты показывают, что индукционный ток возникает в соленоиде только при относительном перемещении соленоида и магнита.
2. Будем опускать в соленоид катушку с током. Оказывается, что и в этом случае в соленоиде возникает индукционный ток только при относительном перемещении соленоида и катушки.
3. Вставим катушку в соленоид и закрепим их неподвижно. При этом тока в соленоиде нет. Но в моменты замыкания или размыкания цепи катушки А в соленоиде появляется индукционный ток. То же самое получается в моменты усиления или ослабления тока в катушке с помощью изменения сопротивления R. В дальнейшем цепь катушки , соединенную с источником электрической энергии, будем называть первичной, а цепь соленоида, в которой возникает индукционный ток, – вторичной. Эти же названия будем применять и к самим катушкам.
4. Включим первичную катушку в сеть переменного тока, а вторичную катушку соединим с лампой накаливания. Оказывается, лампа непрерывно горит, пока в первичной катушке течет переменный ток. Нетрудно заметить, что общим для всех описанных опытов является изменение магнитного поля в соленоиде, которое и создает в нем индукционный ток. 5.Выясним теперь, всякое ли изменение магнитного поля вокруг замкнутого контура наводит в нем индукционный ток. Возьмем плоский контур в виде рамки, соединенной с гальванометром. Поместим рядом с рамкой магнит так, чтобы его линии индукции не проходили внутри рамки, а находились в ее плоскости. Оказывается, что при перемещении рамки или магнита вдоль плоскости рисунка стрелка гальванометра не отклоняется. Если же рамку поворачивать вокруг оси, то в ней возникает индукционный ток.
Вывод:
индукционный ток (и э. д. с. индукции) в замкнутом контуре появляется только в том случае, когда изменяется магнитный поток, который проводит через площадь, охваченную контуром.
ЭДС электромагнитной индукции в контуре пропорциональна и противоположна по знаку скорости изменения магнитного потока сквозь поверхность, натянутую на контур:
-
магнитный поток
В свою очередь, магнитный поток имеет две компоненты: потокосцепление и поток рассеяния Фрас, т.е.:
Ф = + Фрас , (19.3)
- потокосцепление,
Фрас – поток рассеивания.
Потокосцепление - это часть магнитного потока, пронизывающего объем проводника. Поток рассеяния Фрас – это часть магнитного потока, не связанного с проводником, а пронизывающего окружающее пространство.
Направление индукционного тока можно определить по правилу Ленца, которое гласит, что индукционный ток всегда препятствует причине, его порождающей.
Опыт 19.2.Правило Ленца[8,9].
Оборудование:
Прибор для демонстрации правила Ленца.
Магнит прямой.
Рис. 19.4.
Ход работы
1.Будем вдвигать магнит в сплошное кольцо коромысла. Кольцо отталкивается от магнита, что приводит к вращению коромысла. 2.Введем магнит внутрь сплошного кольца и будем магнит выводить. Кольцо будет притягиваться к магниту, что приведет к вращению коромысла.
3.Будем вводить (или выводить) магнит внутрь разрезанного кольца. Коромысло остается в покое.
Вывод:
Магнитное поле индукционного тока всегда противодействует изменению внешнего магнитного потока. В случае с разрезанным кольцом индукционный ток отсутствовал. Следовательно, отсутствовало и взаимодействие кольца с магнитом.
Поясним правило Ленца на следующей модели.
Пусть имеется два контура, по одному из которых течет ток i1.
Рис. 19.6.
При
приближении первого контура ко второму,
индукция поля в области второго контура
увеличивается, поэтому магнитного поля
,
связанного с индукционным током i2,
должно быть таково, чтобы препятствовать
этому увеличению, т.е.
,
отсюда определим направление i2
(рис. 19.7,а,б).
Рис. 19.7,а, б [3].
В электромагнетизме для характеристики свойств проводника возбуждать вокруг себя то или иное магнитное поле вводится понятие индуктивности проводника (в некотором смысле это аналогично введению понятия электроемкости в электростатике).
– индуктивность проводника.
Индуктивностью называется физическая величина, численно равная потоку сцепления при силе тока в проводнике в 1 А.
Итак,
Вычислим
индуктивность соленоида. Возьмем
бесконечно длинный соленоид (бесконечно
длинным считается такой соленоид, длина
которого много больше его диаметра).
При протекании по нему тока I
внутри соленоида возникает однородное
магнитное поле, индукция которого
определяется по формуле
.
Поток через каждый из витков равен =BS,
а полный магнитный поток, сцепленный с
соленоидом, можно вычислить по формуле:
где l – длина соленоида , S – площадь поперечного сечения, n – число витков, приходящихся на единицу длины (тогда произведение nl - полное число витков соленоида N).
Итак, для индуктивности очень длинного соленоида имеем:
где V=lS – объем соленоида.