- •Глава I Электрическое поле в вакууме
- •Краткий исторический обзор развития представлений о природе электричества и магнетизма[11]
- •Представления об электричестве и магнетизме в Древнем мире.
- •Период XVIII-XIX веков.
- •1.3. Вклад отечественных учёных.
- •Современный этап.
- •Тесты к лекции №1.
- •Заряд и поле. Закон Кулона. Напряженность поля[11]
- •2.1. Понятие электрического заряда и его свойства
- •2.2. Закон Кулона
- •2.3. Электрическое поле и его характеристики
- •Силовые линии
- •Опыт 2.3. Силовые линии электрического поля[8,9]
- •Тесты к лекции №2.
- •Теорема Остроградского – Гаусса и ее применение[11]
- •3.1. Основные определения
- •3.2. Теорема Остроградского-Гаусса
- •3.3. Применение теоремы Остроградского – Гаусса
- •3.3.1. Поле заряженной плоскости.
- •3.3.2. Поле разноименных плоскостей
- •3.3.4. Поле заряженной сферы.
- •3.3.5. Поле заряженного шара.
- •Аналогия и различия между электростатическим и гравитационным полями
- •Тесты к лекции №3.
- •Работа электрического поля по перемещению заряда. Потенциал. Потенциальный характер электростатического поля[11]
- •4.1. Вывод формулы для расчета работы сил поля при перемещении заряда
- •Понятие потенциала, потенциальный характер электростатического поля
- •4.3. Связь между напряженностью и потенциалом
- •4.4. Потенциал поля плоского конденсатора, заряженной нити, цилиндрического и сферического конденсаторов.
- •Тесты к лекции №4.
- •Тесты к главе №1.
- •Глава 2 Проводники и диэлектрики в электрическом поле
- •Проводники в электрическом поле. Диэлектрики. Поляризация диэлектриков. Векторы поляризации и электростатической индукции[11]
- •5.1. Проводники в электрическом поле
- •5.2. Диэлектрики
- •5.3. Векторы поляризации и электростатической индукции
- •Тесты к лекции №5.
- •Электроемкость. Конденсаторы и их применение. Энергия и плотность энергии заряженного конденсатора[11]
- •6.1. Электроемкость
- •6.2. Конденсаторы и их применение
- •6.3. Энергия и плотность энергии заряженного конденсатора
- •Тесты к лекции №6.
- •Тесты к главе №2.
- •Глава 3 Электрический ток в различных средах
- •Основные характеристики электрического тока. Закон Ома для участка цепи. Сторонние силы. Закон Ома для полной цепи[11]
- •7.1. Основные характеристики электрического тока
- •7.2. Закон Ома для участка цепи
- •7.3. Сторонние силы. Закон Ома для полной цепи
- •Тесты к лекции №7
- •Сопротивление проводников. Сверхпроводимость. Электронная теория проводимости металлов. Законы Ома и Джоуля – Ленца в дифференциальной форме[11]
- •8.1. Сопротивление проводников
- •8.2. Сверхпроводимость
- •8.3. Электронная теория проводимости металлов
- •8.4. Законы Ома и Джоуля - Ленца в дифференциальной форме
- •Сверхпроводники 1-го и 2-го рода.
- •Эффект Мейснера.
- •Гроб Мухаммеда.
- •Теория бкш. Описание.
- •Математический аппарат.
- •Применение явления сверхпроводимости.
- •Тесты к лекции №8
- •Работа и мощность электрического тока. Закон Джоуля - Ленца. Разветвление цепи. Правила Кирхгофа[11]
- •9.1. Работа и мощность электрического тока. Закон Джоуля - Ленца
- •9.2. Разветвление цепи
- •9.3. Правила Кирхгофа
- •Тесты к лекции №9.
- •Понятие зоной теории проводимости. Контактная разность потенциалов. Термоэлектрические явления и их применение[11]
- •10.1. Понятие о зонной теории проводимости
- •10.2. Контактная разность потенциалов[3]
- •10.3. Термоэлектрические явления и их применение
- •Тесты к лекции №10.
- •Электролитическая диссоциация. Проводимость электролитов. Законы Фарадея для электролиза. Определение заряда иона. Техническое применение электролиза[11]
- •11.1. Электролитическая диссоциация
- •11.2. Проводимость электролитов
- •11.3. Законы Фарадея для электролиза
- •Определение заряда иона
- •Техническое применение электролиза
- •Тесты к лекции №11.
- •Процессы ионизации и рекомбинации. Несамостоятельный и самостоятельный разряды в газе. Виды разрядов. Применение газовых разрядов[11]
- •12.1. Процессы ионизации и рекомбинации. Несамостоятельный и самостоятельный разряды в газе
- •12.2. Виды разрядов. Применение газовых разрядов
- •Тесты к лекции №12.
- •Понятие о плазме. Катодные и каналовые лучи. Термоэлектронная эмиссия. Электронные лампы и их применение.[11]
- •13.1. Понятие о плазме
- •13.2. Термоэлектронная эмиссия
- •13.3. Электронные лампы и их применение
- •Тесты к лекции №13
- •Собственная и примесная проводимость полупроводников, ее зависимость от температуры и освещенности. Полупроводниковые диоды и транзисторы[11]
- •14.1. Собственная и примесная проводимость полупроводников, ее зависимость от температуры и освещенности
- •14.2. Полупроводниковые диоды и транзисторы
- •Тесты к лекции №14
- •Тесты к главе №3.
- •Глава 4 Магнитное поле в вакууме и веществе
- •15.2. Магнитное поле. Индукция и напряженность магнитного поля
- •15.3. Виток с током в магнитном поле
- •Опыт 15.3.Демонстрация спектров магнитного поля токам[8,9].
- •15.4. Закон Био - Савара - Лапласа. Магнитное поле прямого, кругового и соленоидального токов.
- •Тесты к лекции №15
- •16.1. Вихревой характер магнитного поля. Циркуляция вектора индукции магнитного поля. Магнитный поток
- •16.2. Сила Ампера
- •16.3. Работа по перемещению проводника с током в магнитном поле.
- •16.4. Сила Лоренца
- •16.5.Определение удельного заряда электрона
- •Тесты к лекции №16
- •Магнетики. Намагниченность. Связь индукции и напряженности магнитного поля в магнетике. Магнитная проницаемость и восприимчивость. Магнитомеханические явления[11]
- •Магнитомеханические явления
- •Тесты к лекции №17
- •Понятие о диа-, пара- и ферромагнетиках. Доменная структура ферромагнетиков. Магнитный гистерезис. Работы Столетова. Точка Кюри. Магнитные материалы и их применение[11]
- •18.1. Понятие о диа-, пара- и ферромагнетиках. Доменная структура магнетиков
- •18.2. Магнитный гистерезис. Работы а.Г. Столетова. Точка Кюри
- •18.3. Магнитные материалы и их применение
- •Тесты к лекции №18
- •Тесты к главе № 4.
- •Глава 5 Электромагнитные явления
- •Электромагнитная индукция. Опыты, закон индукции Фарадея и правило Ленца. Самоиндукция и взаимоиндукция. Энергия и плотность энергии магнитного поля[11]
- •19.1. Электромагнитная индукция
- •19.2. Самоиндукция и взаимоиндукция
- •19.3. Энергия и плотность энергии магнитного поля
- •Тесты к лекции №19.
- •Получение переменной эдс
- •20.2. Сопротивление, индуктивность и емкость цепи переменного тока. Закон Ома для цепей переменного тока
- •4.Последовательное соединение активного сопротивления, индуктивности и емкости в цепи переменного тока
- •Резонанс в последовательной и параллельной цепи
- •Проблема передачи электроэнергии на расстояние, трансформатор
- •Тесты к лекции №20.
- •21.1. Электрический колебательный контур. Собственные колебания. Формула Томсона
- •Затухающие колебания. Вынужденные колебания в контуре. Резонанс
- •21.3. Электрические автоколебания. Автогенератор на вакуумном триоде и биполярном транзисторе
- •Тесты к лекции №21
- •Вихревое электрическое поле. Ток смещения. Уравнения Максвелла в интегральной форме. Плоские электромагнитные волны в вакууме, скорость их распространения[11]
- •22.2 Уравнения Максвелла в интегральной форме.
- •Плоские электромагнитные волны в вакууме, скорость их распространения
- •Тесты к лекции №22
- •Излучение электромагнитных волн. Опыты Герца, вибратор Герца. Изобретение радиосвязи а.С. Поповым. Принцип радиосвязи и радиолокации[11]
- •Излучение электромагнитных волн
- •23.2. Опыты Герца, вибратор Герца
- •23.3. Изобретение радиосвязи а.С. Поповым. Принцип радиосвязи и радиолокации
- •Тесты к лекции №23
- •Тесты к главе №5.
- •Ключи. Тесты к Лекциям.
- •Тесты к главам.
14.2. Полупроводниковые диоды и транзисторы
Основным элементом большинства полупроводниковых элементов является p-n переход.
р-n переходом называется область на границе полупроводников р и n типов.
Условно р-n переход можно показать следующим образом:
Рис. 14.10.
Опыт 14.3. Полупроводниковый диод.
Цель работы:
Изучить принцип работы полупроводникового диода.
Оборудование:
Источник регулируемого переменного напряжения
Осциллограф
Стенд со схемой
Рис.14.11.
Ход работы.
Установка состоит из источника регулируемого переменного напряжения, осциллографа и стенда со схемой. Переменное напряжение от источника подается на вход стенда. На экране осциллографа наблюдается синусоида. Если увеличивать или уменьшать подаваемое напряжение, то соответственно увеличивается или уменьшается амплитуда синусоидального сигнала, видимого на экране осциллографа.
Изучим характер тока, протекающего через диод. Напряжение, попадающее на стенд, подается на края цепочки, состоящей из последовательно соединенных сопротивления и диода. В результате через цепочку идет уже не переменный ток, а пульсирующий, поскольку диод выпрямляет ток. Он пропускает ток в одном направлении и не пропускает в другом. На схеме диод изображается таким образом, что острие треугольника, на данном этапе оно направлено вверх, указывает направление тока проходящего через диод. Для того чтобы выяснить каков характер тока, проходящего через диод, на вертикальный усилитель подается напряжение, которое снимается с концов сопротивления. Это напряжение пропорционально току, текущему через сопротивление. Наблюдают, что ток через диод действительно течет только в одном направлении. Полпериода ток отсутствует - горизонтальные участки, полпериода ток идет. Это половинки синусоид, которые смотрят вниз. Но если менять величину напряжения, подаваемую на вход стенда, будет меняется и величина тока, текущего через диод. Если повернуть диод на 180 градусов, острие треугольника на схеме будет направлено вниз, т.е. изменится направление тока, протекающего через диод. Сигнал на экране осциллографа пропал. Диод извлекают из стенда, и вновь появился сигнал на экране осциллографа. Однако теперь уже те полпериода, которые соответствуют протеканию тока через диод, отображаются половинками синусоиды, направленными вверх.
Вольт-амперная характеристика диода - зависимость между током, протекающим через диод и напряжением, которое подается на диод. Ток, протекающий через диод, по-прежнему пропорционален напряжению на концах сопротивлений. Это напряжение подается на вертикальный вход осциллографа, а на горизонтальный- напряжение с концов этой цепочки, оно пропорционально напряжению на диоде. В результате на экране осциллографа наблюдается вольт-амперная характеристика диода. Полпериода тока нет, это горизонтальный участок этой характеристики, и полпериода ток идет. Здесь в определенной степени выполняется закон Ома. Величина тока, текущего через диод, пропорциональна напряжению, подаваемому на диод. Если увеличивать или уменьшать напряжение, которое подается на диод, соответственно увеличивается или уменьшается ток, текущий через диод.
Вывод:
Односторонняя проводимость p-n перехода позволяет создать выпрямляющую полупроводниковое устройство, так называемый полупроводниковый диод.
Знак проводимости соответствует знаку источника, тогда дырки переместятся влево, электроны вправо. Через р-n переход пойдет электрический ток, состоящий из электронов и дырок.
Рис. 14.12.
Знак проводимости противоположен знаку источника, тогда носители заряда движутся к полюсам, не переходя границу контакта полупроводников, ток через р-n переход не возникает, следовательно, р-n переход обладает односторонней проводимостью.
р-n переход используется в полупроводниковых диодах.
Рис. 14.13.
Транзистор – полупроводниковый прибор, который состоит из двух р-n переходов, включенных встречно. Эмиттер – область транзистора, откуда берутся носители заряда. Коллектор – область, куда стекаются носители заряда. База выполняет роль, аналогичную роли управляющей сетки в лампе.
Рис. 14.14.
Транзисторы служат для усиления электрических сигналов, потому что небольшое изменение напряжения между эмиттером и базой приводит к значительному изменению напряжения на нагрузке, включенной в цепи коллектора.
Опыт 14.4 Усилитель постоянного тока на транзисторе[8,9]
Оборудование:
1. Транзистор на подставке;
2. Фотодиод на подставке;
3. Источник тока В-24;
4. Соединительные провода;
5. Электрическая лампочка;
6. Два демонстрационных гальванометра;
Схема установки:
Рис. 14.15.
При затемнении фотоэлемента ток небольшой. Если же осветить фотоэлемент, то ток возрастает на участке G2.
