
- •Глава I Электрическое поле в вакууме
- •Краткий исторический обзор развития представлений о природе электричества и магнетизма[11]
- •Представления об электричестве и магнетизме в Древнем мире.
- •Период XVIII-XIX веков.
- •1.3. Вклад отечественных учёных.
- •Современный этап.
- •Тесты к лекции №1.
- •Заряд и поле. Закон Кулона. Напряженность поля[11]
- •2.1. Понятие электрического заряда и его свойства
- •2.2. Закон Кулона
- •2.3. Электрическое поле и его характеристики
- •Силовые линии
- •Опыт 2.3. Силовые линии электрического поля[8,9]
- •Тесты к лекции №2.
- •Теорема Остроградского – Гаусса и ее применение[11]
- •3.1. Основные определения
- •3.2. Теорема Остроградского-Гаусса
- •3.3. Применение теоремы Остроградского – Гаусса
- •3.3.1. Поле заряженной плоскости.
- •3.3.2. Поле разноименных плоскостей
- •3.3.4. Поле заряженной сферы.
- •3.3.5. Поле заряженного шара.
- •Аналогия и различия между электростатическим и гравитационным полями
- •Тесты к лекции №3.
- •Работа электрического поля по перемещению заряда. Потенциал. Потенциальный характер электростатического поля[11]
- •4.1. Вывод формулы для расчета работы сил поля при перемещении заряда
- •Понятие потенциала, потенциальный характер электростатического поля
- •4.3. Связь между напряженностью и потенциалом
- •4.4. Потенциал поля плоского конденсатора, заряженной нити, цилиндрического и сферического конденсаторов.
- •Тесты к лекции №4.
- •Тесты к главе №1.
- •Глава 2 Проводники и диэлектрики в электрическом поле
- •Проводники в электрическом поле. Диэлектрики. Поляризация диэлектриков. Векторы поляризации и электростатической индукции[11]
- •5.1. Проводники в электрическом поле
- •5.2. Диэлектрики
- •5.3. Векторы поляризации и электростатической индукции
- •Тесты к лекции №5.
- •Электроемкость. Конденсаторы и их применение. Энергия и плотность энергии заряженного конденсатора[11]
- •6.1. Электроемкость
- •6.2. Конденсаторы и их применение
- •6.3. Энергия и плотность энергии заряженного конденсатора
- •Тесты к лекции №6.
- •Тесты к главе №2.
- •Глава 3 Электрический ток в различных средах
- •Основные характеристики электрического тока. Закон Ома для участка цепи. Сторонние силы. Закон Ома для полной цепи[11]
- •7.1. Основные характеристики электрического тока
- •7.2. Закон Ома для участка цепи
- •7.3. Сторонние силы. Закон Ома для полной цепи
- •Тесты к лекции №7
- •Сопротивление проводников. Сверхпроводимость. Электронная теория проводимости металлов. Законы Ома и Джоуля – Ленца в дифференциальной форме[11]
- •8.1. Сопротивление проводников
- •8.2. Сверхпроводимость
- •8.3. Электронная теория проводимости металлов
- •8.4. Законы Ома и Джоуля - Ленца в дифференциальной форме
- •Сверхпроводники 1-го и 2-го рода.
- •Эффект Мейснера.
- •Гроб Мухаммеда.
- •Теория бкш. Описание.
- •Математический аппарат.
- •Применение явления сверхпроводимости.
- •Тесты к лекции №8
- •Работа и мощность электрического тока. Закон Джоуля - Ленца. Разветвление цепи. Правила Кирхгофа[11]
- •9.1. Работа и мощность электрического тока. Закон Джоуля - Ленца
- •9.2. Разветвление цепи
- •9.3. Правила Кирхгофа
- •Тесты к лекции №9.
- •Понятие зоной теории проводимости. Контактная разность потенциалов. Термоэлектрические явления и их применение[11]
- •10.1. Понятие о зонной теории проводимости
- •10.2. Контактная разность потенциалов[3]
- •10.3. Термоэлектрические явления и их применение
- •Тесты к лекции №10.
- •Электролитическая диссоциация. Проводимость электролитов. Законы Фарадея для электролиза. Определение заряда иона. Техническое применение электролиза[11]
- •11.1. Электролитическая диссоциация
- •11.2. Проводимость электролитов
- •11.3. Законы Фарадея для электролиза
- •Определение заряда иона
- •Техническое применение электролиза
- •Тесты к лекции №11.
- •Процессы ионизации и рекомбинации. Несамостоятельный и самостоятельный разряды в газе. Виды разрядов. Применение газовых разрядов[11]
- •12.1. Процессы ионизации и рекомбинации. Несамостоятельный и самостоятельный разряды в газе
- •12.2. Виды разрядов. Применение газовых разрядов
- •Тесты к лекции №12.
- •Понятие о плазме. Катодные и каналовые лучи. Термоэлектронная эмиссия. Электронные лампы и их применение.[11]
- •13.1. Понятие о плазме
- •13.2. Термоэлектронная эмиссия
- •13.3. Электронные лампы и их применение
- •Тесты к лекции №13
- •Собственная и примесная проводимость полупроводников, ее зависимость от температуры и освещенности. Полупроводниковые диоды и транзисторы[11]
- •14.1. Собственная и примесная проводимость полупроводников, ее зависимость от температуры и освещенности
- •14.2. Полупроводниковые диоды и транзисторы
- •Тесты к лекции №14
- •Тесты к главе №3.
- •Глава 4 Магнитное поле в вакууме и веществе
- •15.2. Магнитное поле. Индукция и напряженность магнитного поля
- •15.3. Виток с током в магнитном поле
- •Опыт 15.3.Демонстрация спектров магнитного поля токам[8,9].
- •15.4. Закон Био - Савара - Лапласа. Магнитное поле прямого, кругового и соленоидального токов.
- •Тесты к лекции №15
- •16.1. Вихревой характер магнитного поля. Циркуляция вектора индукции магнитного поля. Магнитный поток
- •16.2. Сила Ампера
- •16.3. Работа по перемещению проводника с током в магнитном поле.
- •16.4. Сила Лоренца
- •16.5.Определение удельного заряда электрона
- •Тесты к лекции №16
- •Магнетики. Намагниченность. Связь индукции и напряженности магнитного поля в магнетике. Магнитная проницаемость и восприимчивость. Магнитомеханические явления[11]
- •Магнитомеханические явления
- •Тесты к лекции №17
- •Понятие о диа-, пара- и ферромагнетиках. Доменная структура ферромагнетиков. Магнитный гистерезис. Работы Столетова. Точка Кюри. Магнитные материалы и их применение[11]
- •18.1. Понятие о диа-, пара- и ферромагнетиках. Доменная структура магнетиков
- •18.2. Магнитный гистерезис. Работы а.Г. Столетова. Точка Кюри
- •18.3. Магнитные материалы и их применение
- •Тесты к лекции №18
- •Тесты к главе № 4.
- •Глава 5 Электромагнитные явления
- •Электромагнитная индукция. Опыты, закон индукции Фарадея и правило Ленца. Самоиндукция и взаимоиндукция. Энергия и плотность энергии магнитного поля[11]
- •19.1. Электромагнитная индукция
- •19.2. Самоиндукция и взаимоиндукция
- •19.3. Энергия и плотность энергии магнитного поля
- •Тесты к лекции №19.
- •Получение переменной эдс
- •20.2. Сопротивление, индуктивность и емкость цепи переменного тока. Закон Ома для цепей переменного тока
- •4.Последовательное соединение активного сопротивления, индуктивности и емкости в цепи переменного тока
- •Резонанс в последовательной и параллельной цепи
- •Проблема передачи электроэнергии на расстояние, трансформатор
- •Тесты к лекции №20.
- •21.1. Электрический колебательный контур. Собственные колебания. Формула Томсона
- •Затухающие колебания. Вынужденные колебания в контуре. Резонанс
- •21.3. Электрические автоколебания. Автогенератор на вакуумном триоде и биполярном транзисторе
- •Тесты к лекции №21
- •Вихревое электрическое поле. Ток смещения. Уравнения Максвелла в интегральной форме. Плоские электромагнитные волны в вакууме, скорость их распространения[11]
- •22.2 Уравнения Максвелла в интегральной форме.
- •Плоские электромагнитные волны в вакууме, скорость их распространения
- •Тесты к лекции №22
- •Излучение электромагнитных волн. Опыты Герца, вибратор Герца. Изобретение радиосвязи а.С. Поповым. Принцип радиосвязи и радиолокации[11]
- •Излучение электромагнитных волн
- •23.2. Опыты Герца, вибратор Герца
- •23.3. Изобретение радиосвязи а.С. Поповым. Принцип радиосвязи и радиолокации
- •Тесты к лекции №23
- •Тесты к главе №5.
- •Ключи. Тесты к Лекциям.
- •Тесты к главам.
Современный этап.
Хотя в последние тридцать лет в физике наблюдается некоторое затишье, уже намечаются некоторые открытия. Так, например, проводятся попытки сравнить скорости распространения гравитационного и электромагнитного взаимодействия, которые, по предсказаниям теории относительности, совпадают. В ЦЕРНе построен Большой адронный коллайдер высоких энергий, который должен помочь проверить две фундаментальные теории: Суперсимметрия и бозон Хиггса.
В январе 2003 года исследователь Университета штата Миссури Сергей Копейкин и астрофизик Эд Фомалонт измерили скорость распространения гравитации. Она оказалась 0.95 скорости света с погрешностью в 20 % в полном соответствии с теорией относительности Эйнштейна.
Всё большее внимание отводится рассмотрению вопросов, связанных с устройством вещества на субэлементарном уровне (бесконечная вложенность материи).
Крупнейшая АЭС в мире Касивадзаки-Карива по установленной мощности (на 2008 год) находится в Японском городе Касивадзаки префектуры Ниигата — в эксплуатации находятся ядерные реакторы, суммарная мощность которых составляет 8,212 ГигаВатт.
В настоящее время при участии России на юге Франции ведётся строительство международного экспериментального термоядерного реактора ITER.
Без успехов в разработке и исследовании новых материалов для микроэлектроники было бы невозможно создание современных электронных вычислительных машин.
Элементной базой ЭВМ первого поколения (1945-1950 гг.) были вакуумные электронные лампы. Главным недостатком электронных ламп было то, что устройства на их основе были очень громоздкими. Для питания ламп необходимо было подводить дополнительную энергию для нагрева катода, а образованное ими тепло отводить. С середины ХХ века лампы практически полностью вытеснились транзисторами.
Следующим крупным шагом в истории ЭВМ стало изобретение транзистора в 1947 году. О компьютерах на транзисторах обычно говорят как о «втором поколении», которое доминировало в 1950-х и начале 1960-х годов. Например, IBM 1620 на транзисторах была размером с офисный стол. Однако ЭВМ второго поколения по-прежнему были довольно дороги и поэтому использовались только университетами, правительствами, крупными корпорациями.
Бурный рост использования компьютеров связан с т. н. «3-им поколением» вычислительных машин. Начало этому этапу положило изобретение интегральных схем (1958 г.), которые независимо друг от друга разработали лауреат Нобелевской премии Джек Килби (германиевые) и Роберт Нойс (кремниевые).
Появление микропроцессоров привело к разработке микрокомпьютеров — небольших недорогих компьютеров, которыми могли владеть небольшие компании или отдельные люди. Микрокомпьютеры, представители четвертого поколения, первые из которых появились в 1970-х, стали повсеместным явлением в 1980-х и позже.
Дальнейший прогресс современного этапа развития электродинамики связан с созданием квантовой теории поля.
Квантовая теория поля (КТП) — квантовая теория систем с бесконечным числом степеней свободы (физических полей). КТП, возникшая как обобщение квантовой механики в связи с проблемой описания процессов порождения, поглощения и взаимных превращений элементарных частиц, нашла затем широкое применение в теории твёрдого тела, атомного ядра и других систем и является теперь основным теоретическим методом исследования квантовых систем.
КТП оказалась единственной пока теорией, способной описать и предсказать поведение элементарных частиц при высоких энергиях (то есть при энергиях, существенно превышающих их энергию покоя). Можно выделить следующие основные вехи в разработке современной теории поля:
1863 г. Максвелл - создана теория электромагнетизма.
1900 г. Макс Планк – создана квантовая теория излучения.
1905 г. А. Эйнштейн – разработана фотонная теория света.
1915 г. А. Эйнштейн - сформулировал общую теорию относительности.
1923 г. Луи де Бройль - предположил, что корпускулярно-волновой дуализм свойственен не только свету, но и веществу.
1925 г. Вернер Гейзенберг - разработал «матричную механику».
1928 г. Поль Дирак - дал релятивистский вариант квантовой механики и предсказал существование позитрона, положив начало квантовой электродинамике.
В 1932 г. после открытия Чедвиком нейтрона было установлено, что ядра атомов состоит из протонов и нейтронов.
1940-е гг. квантовая электродинамика как последовательная квантовая теория поля была создана Фейнманом, Швингераом, Томонагой, Дайсоном.
В 1967 году Саламом и Вайнбергом была создана теория электрослабого взаимодействия.
В 1973 году была предложена теория сильного взаимодействия (квантовая хромодинамика).
Развитие электромагнетизма привело к появлению различных приложений в области техники. Были созданы электрические генераторы, мощные трансформаторы и другие устройства, применяемые для создания и передачи электрической энергии на большие расстояния.