
- •Глава I Электрическое поле в вакууме
- •Краткий исторический обзор развития представлений о природе электричества и магнетизма[11]
- •Представления об электричестве и магнетизме в Древнем мире.
- •Период XVIII-XIX веков.
- •1.3. Вклад отечественных учёных.
- •Современный этап.
- •Тесты к лекции №1.
- •Заряд и поле. Закон Кулона. Напряженность поля[11]
- •2.1. Понятие электрического заряда и его свойства
- •2.2. Закон Кулона
- •2.3. Электрическое поле и его характеристики
- •Силовые линии
- •Опыт 2.3. Силовые линии электрического поля[8,9]
- •Тесты к лекции №2.
- •Теорема Остроградского – Гаусса и ее применение[11]
- •3.1. Основные определения
- •3.2. Теорема Остроградского-Гаусса
- •3.3. Применение теоремы Остроградского – Гаусса
- •3.3.1. Поле заряженной плоскости.
- •3.3.2. Поле разноименных плоскостей
- •3.3.4. Поле заряженной сферы.
- •3.3.5. Поле заряженного шара.
- •Аналогия и различия между электростатическим и гравитационным полями
- •Тесты к лекции №3.
- •Работа электрического поля по перемещению заряда. Потенциал. Потенциальный характер электростатического поля[11]
- •4.1. Вывод формулы для расчета работы сил поля при перемещении заряда
- •Понятие потенциала, потенциальный характер электростатического поля
- •4.3. Связь между напряженностью и потенциалом
- •4.4. Потенциал поля плоского конденсатора, заряженной нити, цилиндрического и сферического конденсаторов.
- •Тесты к лекции №4.
- •Тесты к главе №1.
- •Глава 2 Проводники и диэлектрики в электрическом поле
- •Проводники в электрическом поле. Диэлектрики. Поляризация диэлектриков. Векторы поляризации и электростатической индукции[11]
- •5.1. Проводники в электрическом поле
- •5.2. Диэлектрики
- •5.3. Векторы поляризации и электростатической индукции
- •Тесты к лекции №5.
- •Электроемкость. Конденсаторы и их применение. Энергия и плотность энергии заряженного конденсатора[11]
- •6.1. Электроемкость
- •6.2. Конденсаторы и их применение
- •6.3. Энергия и плотность энергии заряженного конденсатора
- •Тесты к лекции №6.
- •Тесты к главе №2.
- •Глава 3 Электрический ток в различных средах
- •Основные характеристики электрического тока. Закон Ома для участка цепи. Сторонние силы. Закон Ома для полной цепи[11]
- •7.1. Основные характеристики электрического тока
- •7.2. Закон Ома для участка цепи
- •7.3. Сторонние силы. Закон Ома для полной цепи
- •Тесты к лекции №7
- •Сопротивление проводников. Сверхпроводимость. Электронная теория проводимости металлов. Законы Ома и Джоуля – Ленца в дифференциальной форме[11]
- •8.1. Сопротивление проводников
- •8.2. Сверхпроводимость
- •8.3. Электронная теория проводимости металлов
- •8.4. Законы Ома и Джоуля - Ленца в дифференциальной форме
- •Сверхпроводники 1-го и 2-го рода.
- •Эффект Мейснера.
- •Гроб Мухаммеда.
- •Теория бкш. Описание.
- •Математический аппарат.
- •Применение явления сверхпроводимости.
- •Тесты к лекции №8
- •Работа и мощность электрического тока. Закон Джоуля - Ленца. Разветвление цепи. Правила Кирхгофа[11]
- •9.1. Работа и мощность электрического тока. Закон Джоуля - Ленца
- •9.2. Разветвление цепи
- •9.3. Правила Кирхгофа
- •Тесты к лекции №9.
- •Понятие зоной теории проводимости. Контактная разность потенциалов. Термоэлектрические явления и их применение[11]
- •10.1. Понятие о зонной теории проводимости
- •10.2. Контактная разность потенциалов[3]
- •10.3. Термоэлектрические явления и их применение
- •Тесты к лекции №10.
- •Электролитическая диссоциация. Проводимость электролитов. Законы Фарадея для электролиза. Определение заряда иона. Техническое применение электролиза[11]
- •11.1. Электролитическая диссоциация
- •11.2. Проводимость электролитов
- •11.3. Законы Фарадея для электролиза
- •Определение заряда иона
- •Техническое применение электролиза
- •Тесты к лекции №11.
- •Процессы ионизации и рекомбинации. Несамостоятельный и самостоятельный разряды в газе. Виды разрядов. Применение газовых разрядов[11]
- •12.1. Процессы ионизации и рекомбинации. Несамостоятельный и самостоятельный разряды в газе
- •12.2. Виды разрядов. Применение газовых разрядов
- •Тесты к лекции №12.
- •Понятие о плазме. Катодные и каналовые лучи. Термоэлектронная эмиссия. Электронные лампы и их применение.[11]
- •13.1. Понятие о плазме
- •13.2. Термоэлектронная эмиссия
- •13.3. Электронные лампы и их применение
- •Тесты к лекции №13
- •Собственная и примесная проводимость полупроводников, ее зависимость от температуры и освещенности. Полупроводниковые диоды и транзисторы[11]
- •14.1. Собственная и примесная проводимость полупроводников, ее зависимость от температуры и освещенности
- •14.2. Полупроводниковые диоды и транзисторы
- •Тесты к лекции №14
- •Тесты к главе №3.
- •Глава 4 Магнитное поле в вакууме и веществе
- •15.2. Магнитное поле. Индукция и напряженность магнитного поля
- •15.3. Виток с током в магнитном поле
- •Опыт 15.3.Демонстрация спектров магнитного поля токам[8,9].
- •15.4. Закон Био - Савара - Лапласа. Магнитное поле прямого, кругового и соленоидального токов.
- •Тесты к лекции №15
- •16.1. Вихревой характер магнитного поля. Циркуляция вектора индукции магнитного поля. Магнитный поток
- •16.2. Сила Ампера
- •16.3. Работа по перемещению проводника с током в магнитном поле.
- •16.4. Сила Лоренца
- •16.5.Определение удельного заряда электрона
- •Тесты к лекции №16
- •Магнетики. Намагниченность. Связь индукции и напряженности магнитного поля в магнетике. Магнитная проницаемость и восприимчивость. Магнитомеханические явления[11]
- •Магнитомеханические явления
- •Тесты к лекции №17
- •Понятие о диа-, пара- и ферромагнетиках. Доменная структура ферромагнетиков. Магнитный гистерезис. Работы Столетова. Точка Кюри. Магнитные материалы и их применение[11]
- •18.1. Понятие о диа-, пара- и ферромагнетиках. Доменная структура магнетиков
- •18.2. Магнитный гистерезис. Работы а.Г. Столетова. Точка Кюри
- •18.3. Магнитные материалы и их применение
- •Тесты к лекции №18
- •Тесты к главе № 4.
- •Глава 5 Электромагнитные явления
- •Электромагнитная индукция. Опыты, закон индукции Фарадея и правило Ленца. Самоиндукция и взаимоиндукция. Энергия и плотность энергии магнитного поля[11]
- •19.1. Электромагнитная индукция
- •19.2. Самоиндукция и взаимоиндукция
- •19.3. Энергия и плотность энергии магнитного поля
- •Тесты к лекции №19.
- •Получение переменной эдс
- •20.2. Сопротивление, индуктивность и емкость цепи переменного тока. Закон Ома для цепей переменного тока
- •4.Последовательное соединение активного сопротивления, индуктивности и емкости в цепи переменного тока
- •Резонанс в последовательной и параллельной цепи
- •Проблема передачи электроэнергии на расстояние, трансформатор
- •Тесты к лекции №20.
- •21.1. Электрический колебательный контур. Собственные колебания. Формула Томсона
- •Затухающие колебания. Вынужденные колебания в контуре. Резонанс
- •21.3. Электрические автоколебания. Автогенератор на вакуумном триоде и биполярном транзисторе
- •Тесты к лекции №21
- •Вихревое электрическое поле. Ток смещения. Уравнения Максвелла в интегральной форме. Плоские электромагнитные волны в вакууме, скорость их распространения[11]
- •22.2 Уравнения Максвелла в интегральной форме.
- •Плоские электромагнитные волны в вакууме, скорость их распространения
- •Тесты к лекции №22
- •Излучение электромагнитных волн. Опыты Герца, вибратор Герца. Изобретение радиосвязи а.С. Поповым. Принцип радиосвязи и радиолокации[11]
- •Излучение электромагнитных волн
- •23.2. Опыты Герца, вибратор Герца
- •23.3. Изобретение радиосвязи а.С. Поповым. Принцип радиосвязи и радиолокации
- •Тесты к лекции №23
- •Тесты к главе №5.
- •Ключи. Тесты к Лекциям.
- •Тесты к главам.
6.2. Конденсаторы и их применение
Устройство для накопления электрических зарядов называется конденсатором. Любой конденсатор состоит из двух металлических проводников – обкладок, разделенных слоем диэлектрика.
Конденсаторы бывают плоские, сферические, цилиндрические. По роду диэлектрика они подразделяются на воздушные, бумажные, слюдяные, керамические. По способу изготовления можно выделить особую группу – электролитические конденсаторы.
Опыт 6.1. Емкость плоского конденсатора[8,9]
Оборудование:
Конденсатор разборный.
Штативы изолирующие.
Электрометр.
Палочка эбонитовая или стеклянная с куском меха.
Штатив универсальный.
Провода соединительные.
Линейка или метр демонстрационный.
Рис. 6.1.
Ход работы:
1.Две металлические пластины, образующие плоский конденсатор, подключим к электрометру — прибору, измеряющему разность потенциалов. Убедимся, что электрометр показывает не заряд, а разность потенциалов.
2.Зарядив Диск В от электрофорной машины или от высоковольтного преобразователя до заряда Q, при котором стрелка электрометра отклонится до деления, близкого к наибольшему. Диск А зарядится через влияние зарядом, противоположным по знаку заряду на диске В. Пусть площадь каждой пластины (диска) S, расстояние между дисками d = 2 см. Заметим показание электрометра U при заряде конденсатора Q. 3.Уменьшим расстояние между пластинами в 2 раза. При этом заряд на пластиках не изменится. Получим новый конденсатор, у которого S1=S, , или C1=2C (емкость конденсатора увеличилась 2 раза). 'Гак как , то . Поскольку емкость увеличилась в 2 раза, разность потенциалов должна уменьшиться в 2 раза, что и наблюдается при выполнении опыта. (Заряд Q не изменился, а показания электрометра изменились в соответствии с изменением разности потенциалов.).
4.Если увеличить расстояние d в 3 раза, то емкость уменьшится в 3 раза, а разность потенциалов возрастет в 3 раза.
Выводы:
1. Чем меньше площадь перекрытия – активная площадь, тем меньше электроемкость (и наоборот):
C~S.
2. Чем меньше расстояние между обкладками, тем больше электроемкость (и наоборот):
.
3. Чем меньше проницаемость диэлектриков, тем меньше электроемкость (и наоборот):
.
Обобщая результаты опыта, приходим к следующей зависимости :
.
Если ввести коэффициент, учитывающий выбор системы единиц, то можно перейти к строгому равенству. Приведем (без вывода) формулу емкости плоского конденсатора в СИ :
Конденсаторы, возможно, объединять в различные схемы. Существует два вида соединений конденсаторов: последовательное и параллельное.
Опыт 6.2.Зависимость емкости от свойств среды.
Цель работы:
Выявить зависимость емкости от свойств среды.
Оборудование:
Плоский конденсатор
Стеклянная пластина
Электроскоп
Рис.6.2.
Ход работы.
Заряжаем конденсатор. Помещаем между пластинами конденсатора пластинку из оргстекла и видим, что разность потенциалов уменьшается.
После извлечения пластины емкость уменьшается, разность потенциалов вновь увеличивается.
Вывод:
В диэлектрике электрическое поле ослабляется и уменьшается соответственно разность потенциалов. Емкость конденсатора при этом увеличивается.
Опыт 6.3. Емкость уединенного проводника.
Цель работы:
Изучить емкость уединенного проводника.
Оборудование:
Электроскоп
Медная спираль
Мех
Эбонитовая палочка
Рис.6.3.
Ход работы.
Зарядив металлическую чашку электроскопа вместе с расположенной на ней медной спиралью от эбонитовой палки, мы видим, что при растягивании спирали, увеличении геометрических размеров проводника, показание электроскопа уменьшаются, а при уменьшении размера - увеличиваются.
Вывод:
Потенциал, который приобретает проводник при его заряжении, зависит от его электроемкости. Чем больше размеры проводника, тем больше емкость, и при одинаковом заряде потенциал будет меньше.
Последовательное соединение
Рассмотрим последовательное соединение конденсаторов. Для последовательного соединения можно указать, что падение потенциала на всей цепи равно сумме разностей потенциалов на обкладках всех конденсаторов, составляющих батарею:
При суммировании получим:
.
Рис. 6.2.
Тогда для каждого конденсатора:
тогда
Итак, при последовательном соединении конденсаторов величина, обратная эквивалентной емкости, равна сумме величин, обратных емкостям конденсаторов, составляющих батарею. Поэтому эквивалентная емкость меньше, чем наименьшая емкость, включенная в цепь.
Параллельное соединение
Рис. 6.3.
При
таком соединении U=const, а
.
Тогда:
т.е. при параллельном соединении конденсаторов их емкости складываются.