Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Plasma_Theory_C (1).docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
2.48 Mб
Скачать

6.3. Радиационно-конденсационная неустойчивость.

MARFE

В экспериментах на токамаках с низкой температурой периферии, например при охлаждении последней потоком нейтралов, было обнаружено образование на периферии довольно плотного холодного облака плазмы, в котором излучение примеси было сравнимо с потоком тепла из центра. В токамаках с лимитером оно локализовано вблизи внутреннего обвода тора, а в токамаках с дивертором – вблизи х-точки. Это явление называется MARFE (Microfaceted Radiation From the Edge). Объяснение ему дает теория радиационно-конденсационной неустойчивости.

Как видно из рис. 14, мощность излучения примеси падает с ростом температуры. Следовательно, в этой области температуры случайное падение температуры приводит к увеличению радиационных потерь и к дальнейшему падению температуры. Одновременно, если процесс идет достаточно медленно, давление плазмы остается почти постоянным, и при падении температуры растёт плотность. Так как мощность излучения пропорциональна произведению плотности основной плазмы и плотности примеси, падение температуры через увеличение плотности приводит к дополнительному росту излучения и дальнейшему падению температуры. Теплопроводность препятствует этому процессу.

Система оказывается неустойчивой, а неустойчивость получила название радиационно-конденсационной.

Рассмотрим эту неустойчивость для простоты в незамагниченной плазме. В замагниченной плазме процессы аналогичны. В этом случае смещение плазмы и возмущённые потоки тепла в основном направлены вдоль поля. Будем считать, что концентрация примесей достаточно мала, и их влияние следует учитывать лишь в уравнении тепла, так как излучение примеси может быть достаточно велико, и потери энергии на излучение могут быть сравнимы с притоком тепла из центральной области.

Будем считать, что время развития неустойчивости много больше периода звуковых колебаний. Тогда можно положить давление постоянным:

. (6.3.1)

Движение будем считать одномерным. Уравнение для плотности основной плазмы имеет обычный вид

. (6.3.2)

Уравнение для переноса тепла имеет вид

. (6.3.3)

Здесь поток тепла ( – коэффициент теплопроводности), Sисточник тепла, Q – потери тепла на излучение. Величину Q можно представить как сумму потерь на излучение отдельных зарядовых состояний. Пусть имеется всего два наиболее представленных ионизационных состояния:

(6.3.4)

Величины S и будем для простоты считать постоянными.

Для лёгких примесей можно воспользоваться приближением двух или трех наиболее представленных ионов. Дело в том, что энергии ионизаций ионов с зарядами z и z+1 сильно отличаются, и можно считать, что при заданной температуре в плазме присутствует лишь незначительное число наиболее представленных ионов. Мы будем считать, что в плазме присутствуют два таких иона с зарядами z и z+1. Тогда для иона с зарядом z уравнение непрерывности будет иметь вид

. (6.3.5)

Здесь – скорость рекомбинации иона с зарядом z+1, а – скорость ионизации иона с зарядом z. Мы считаем, что переходы с изменением зарядового номера более чем на единицу маловероятны.

В нулевом приближении плазма однородна и стационарна (для замагниченной плазмы в цилиндрическом приближении надо считать, что её плотность постоянна вдоль силовых линий). Тогда из (6.3.5) находим

; . (6.3.6)

Выражение для мощности излучения упрощается:

. (6.3.7)

Здесь , а – невозмущённая температура. Положим

; . (6.3.8)

Получим теперь уравнения для возмущённых величин в первом приближении.

Одним из материалов, предлагаемых для первой стенки или диверторных пластин, является литий. Для лития сумма сводится к одному члену, так как голое ядро (z = 3) не излучает в линиях, а водородоподобный ион (z = 2) излучает слабо по сравнению с однозарядным ионом, и можно положить . При не слишком малых температурах можно пренебречь концентрацией равновесных нейтралов, . Следует заметить, что в реальном токамаке всегда присутствуют неравновесные нейтралы, пришедшие со стенки, но мы этим эффектом будем пренебрегать.

В первом приближении перейдем к фурье-представлению. Линеаризуем уравнение (6.3.1), положив .

. (6.3.9)

Уравнение для плотности примеси в первом порядке будет выглядеть как

(6.3.10)

Уравнение для переноса тепла принимает вид

. (6.3.11)

При получении этого выражения мы приняли во внимание, что с помощью уравнения непрерывности и выражения (6.3.9) можно в уравнение (6.3.3) в фурье-представлении подставить . Кроме того, из уравнения непрерывности имеем .

Расчёты показывают: если примесь движется вместе с основной плазмой (т. е. условие (6.1.3) выполняется и в возмущённой плазме), то частота является чисто мнимой, , где – чисто действительный инкремент колебаний. На самом деле частота имеет конечную действительную часть, которая может превышать инкремент в узкой области вблизи порога устойчивости. Мы будем пренебрегать этим эффектом.

Рассмотрим границу неустойчивости, т. е. случай . Подставив (6.3.10) в (6.3.11) при , получаем выражение, определяющее эту границу:

. (6.3.12)

Таким образом, перетекание плазмы в более холодную область приводит к увеличению потерь из более холодной области и дальнейшее понижение температуры. К аналогичному эффекту приводит и своеобразная зависимость излучения от температуры в некоторой области температур. В довольно широкой области температур (см. рис. 15) излучение растёт с понижением температуры и ещё более эту температуру понижает. Такое явление называется радиационно-конденсационной неустойчивостью. Теплопроводность, которая быстро растёт с ростом температуры, препятствует этому эффекту.

В токамаке подобное явление наблюдается на периферии, когда её температура достаточно мала, и теплопроводность не может подавить развитие неустойчивости (MARFE). При этом вблизи внутреннего обвода тора, где температура, а с ней и теплопроводность несколько ниже, чем на внешнем обводе, образуется холодное сильно излучающее облако плазмы, в котором может накопиться до 50 % общей массы плазмы.

ЗАКЛЮЧЕНИЕ

Проблемы, представленные в настоящем пособии, являются важной, но далеко не всеохватывающей частью теории горячей плазмы и магнитного удержания. Ограниченный объём пособия не позволяет включить в книгу такие важные разделы теории, как теория безындукционного поддержания тока в токамаке, теория распространения, трансформации и затухания волн неоднородной среде, теория ЭЦР- и ИЦР-резонансов и ряд других вопросов. В стороне от изложения осталась как линейная, так и нелинейная теория баллонных мод, играющая существенную роль в теории аномального переноса, определяющего переносы в термоядерных устройствах. Вообще теория турбулентности не излагается в настоящем пособии, так как в настоящее время в науке разработана недостаточно. Многие результаты в этой области получены с помощью численных методов, базирующихся на приближенных подходах, требующих дальнейшей теоретической и экспериментальной проверки. Вопросы, не затронутые в настоящем пособии, освещены в ряде монографий и в журнальной литературе. В частности, можно рекомендовать многотомное издание «Вопросы теории плазмы», а также журналы «Физика плазмы», «Nuclear Fusion», «Physics of Plasmas», «Plasma Physics and Controlled Nuclear Fusion».

Полностью в стороне остались теория термоядерного и пучкового синтеза, а также теория ядерного катализа, которым также посвящены многочисленные научные издания.

Тем не менее настоящее пособие может служить стартовой ступенью для изучения обширной и сложной области науки, называемой «Теория плазмы».

СПИСОК РЕКОМЕНДУЕМОЙ ЛИТЕРАТУРЫ

1. Трубников Б.А. Теория плазмы. М.: Энергоатомиздат, 1996.

2. Брагинский С.И. В сб. «Вопросы теории плазмы» /под ред. М.А. Леонтовича, вып.1, с.183. М.: Атомиздат, 1963.

3. Миямото К. Основы физики плазмы и управляемого синтеза/ Под общ. ред. акад. Шафранова В.Д. М.: Физматлит, 2007.

4. Погуце О.П., Юрченко Э.И. Баллонные эффекты и устойчивость плазмы в токамаке. В сб. «Вопросы теории плазмы»/Под ред. М.А. Леонтовича и Б.Б. Кадомцева, вып. 11, с. 56. М.: Энергоатомиздат, 1982.

5. Кадомцев Б.Б., Погуце О.П. Турбулентные процессы в тороидальных системах. В сб. «Вопросы теории плазмы»/Под ред. М.А. Леонтовича, вып. 5, с. 209, 1967.

6. Kadomtsev B.B., Pogutse O.P., Yurchenko E.1. Non-linear MHD equations and dissipative ballooning modes. Plasma Physics and Controlled Nuclear Fusion Research, 1982, IAEA. Vienna, 1983, p. 67-65. (см. также в книге Б.Б. Кадомцев Избранные труды. Т.1, с. 420–427).

7. Морозов Д.Х., Баронова Е.О., Сениченков И.Ю. Излучение примесей в плазме токамака. Физика плазмы, т. 33, с. 988–1005, 2007.

8. Морозов Д.Х. Введение в теорию горячей плазмы. Ч. 1. Изд-во МИФИ, 2011 г.

Дмитрий Хаимович Морозов

Введение в теорию горячей плазмы.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]