
- •Е.В. Серебрякова химия биологически активных веществ
- •1 )Изомерия углеродного скелета
- •2) Изомерия положения аминогруппы
- •3) Межклассовая изомерия
- •2) Реакции по карбоксильной группе
- •3) Образование амидов по карбоксильной группе
- •4)Реакции по аминогруппе
- •5) Специфические реакции
- •1) Биуретовая реакция
- •2) Нингидриновая реакция на α-аминокислоты
- •4) Реакция с азотно-ртутным реактивом Миллона
- •5) Реакция Адамкевича на триптофан
- •6) Реакция Сакагучи на аргинин
- •7)Реакция Фоля на серосодержащие аминокислоты
- •1) Восстановительное
- •2)Гидролитическое
- •1 По числу аминокислотных остатков:
- •4 Классификация может сочетаться:
- •1) Регулирующая функция:
- •1 Структурные белки
- •2 Каталитическая (ферментативная) функция
- •3 Транспортные белки
- •4 Защитные белки
- •7 Рецепторная (сигнальная) функция белков
- •9 Энергетическая функция
- •2. Реакция спиртовых гидроксидов:
- •4. Образование хелатных комплексов.
- •Крахмал
- •6.1 Гидролиз или омыление, жиров
1 Структурные белки
Структурные белки выполняют защитную функцию (кожные покровы) или опорную – скрепляют организм в единое целое и придают ему прочность (хрящи и сухожилия)
Некоторые белки, расположенные определённым образом в тканях, придают им форму, создают опору, определяют механические свойства данной ткани.
Другие структурный беки (эластин) благодаря своему уникальному строению обеспечивает определённым тканям свойство растягиваться во всех направлениях (сосуды, лёгкие).
Белки входят в состав:
клеточных мембран и матрикса органелл клетки;
стенок кровеносных сосудов, хрящей, сухожилий, суставных связок – белок – эластин, легко растягивающийся в двух измерениях;
роговые образования - волосы, ногти, рогова, перья, когти у высших животных – эти белки состоят преимущественно из белков – керотина – его основное отличие высокое содержание цистеина, образующего дисульфидные мостики, что придает высокую упругость (способность восстанавливать исходную форму после деформации) волосам, а также шерстяным тканям;
костей – белок – оссеин;
шелк, паутина – белок – фиброин;
белок, участвующий в образовании тромбов – фибрин.
Д
ля
необратимого изменения формы кератинового
объекта нужно вначале разрушить
дисульфидные мостики с помощью
восстановителя, придать новую форму, а
затем вновь создать дисульфидные мостики
с помощью окислителя, так делается
химическая завивка волос.
При увеличении содержания остатков цистеина в кератине и, соответственно, возрастании количества дисульфидных мостиков способность к деформации исчезает, но при этом появляется высокая прочность (в рогах копытных животных и панцирях черепах содержится до 18% цистеиновых фрагментов). В организме млекопитающих содержится до 30 различных типов кератина.
Родственный кератину фибриллярный белок фиброин, выделяемый гусеницами шелкопряда при завивке кокона, а также пауками при плетении паутины, содержит только β-структуры, соединенные одиночными цепями.
В
отличие от кератина, у фиброина нет
поперечных дисульфидных мостиков, он
обладает очень прочен на разрыв (прочность
в расчете на единицу поперечного сечения
у некоторых образцов паутины выше, чем
у стальных тросов). Из-за отсутствия
поперечных сшивок фиброин неупруг
(известно, что шерстяные ткани почти
несминаемы, а шелковые легко мнутся).
Белок фиброин, выделяемый гусеницами шелкопряда при завивке кокона, а также пауками при плетении паутины, содержит только β-структуры, соединенные одиночными цепями.
Он содержат большое количество остатков глицина, аланина и серина (каждый второй аминокислотный остаток – глицин); остатки цистеина, содержащего сульфгидридные группы, отсутствуют. Фиброин – основной компонент натурального шелка и паутины, содержит β-структуры, соединенные одиночными цепями.
В состав многих белков помимо пептидных цепей входят и неаминокислотные фрагменты, по этому критерию белки делят на две большие группы — простые и сложные белки (протеиды).
Простые белки содержат только аминокислотные цепи,
сложные белки содержат также неаминокислотные фрагменты.
Эти фрагменты небелковой природы в составе сложных белков называются «простетическими группами». В зависимости от химической природы простетических групп среди сложных белков выделяют следующие классы: гликопротеиды - содержащие в качестве простетической группы ковалентно связанные углеводные остатки (в образовании связи с углеводными остатками обычно участвуют гидроксильные группы серина или треонина. Большая часть внеклеточных белков, в частности, иммуноглобулины — гликопротеиды), липопротеиды, металлопротеиды, нуклеопротеиды, фосфопротеиды (ковалентно связанные остатки фосфорной кислоты с аминокислотой (серин и треонин - в казеине молока), хромопротеиды (гемоглобин).
Т
рехмерная
схема жидкостно-мозаичной модели
мембраны Сингера- Николсона; изображены
глобулярные интегральные белки,
погруженные в липидный бислой. Часть
белков является ионными каналами, другие
(гликопротеины) содержат олигосахаридные
боковые цепи, участвующие в узнавании
клетками друг друга и в межклеточной.
Молекулы холестерола вплотную примыкают
к фосфолипидным головкам и фиксируют
прилегающие участки "хвостов".
Внутренние участки хвостов молекулы
фосфолипидов не ограничены в своем
движении и ответственны за текучесть
мембраны (Bretscher, 1985).
1 — гликолипид, 2 — ионный канал, 3 — фосфолипид, 4 — интегральный белок, 5 — олигосахаридная боковая цепь, б — гидрофобный участок α—спирали, 7 — α—спиральная белковая молекула, 8 — холестерин, 9 — наружная поверхность, 10 — липидная сердцевина, 11 — внутренняя поверхность.
Мембрана имеет толщину 8-12 нм и состоит из бимолекулярного слоя липидов, причем гидрофобные концы молекул фосфолипидов и триглицеридов направлены внутрь, а наружу - гидрофильные головки. В двойной слой липидов встроены белки, которые пронизывают липидный слой насквозь, либо погружены в него частично. Существуют периферийные белки, покрывающие некоторые мембраны с одной или двух сторон сетью вытянутых молекул. При этом молекулы фосфолипидов и белков находятся в непрерывном движении и взаимодействии. Липидный слой определяет основные структурные особенности биологических мембран, а белки ответственны за большинство функций мембран (транспорт, передача сигналов и т.д.). В активном состоянии мембрана имеет жидкую консистенцию, которая зависит от соотношения насыщенных и ненасыщенных жирных кислот.
В настоящее время выявлено четыре основных механизма транспорта через цитоплазматическую мембрану как клетки, так и клеточных органелл: диффузия, осмос, активный транспорт, экзо- и эндоцитоз.
Мембранные белки локализованы на поверхности мембраны или могут быть внедрены на различную глубину в гидрофобную зону. Некоторые белки пронизывают мембрану насквозь, и различные гидрофильные группы одного и того же белка обнаруживаются по обе стороны клеточной мембраны. Белки, обнаруженные в плазматической мембране, играют очень важную роль: они участвуют в образовании ионных каналов, играют роль мембранных насосов и переносчиков различных веществ, а также могут выполнять рецепторную функцию.