
- •Общая постановка задачи линейного программирования
- •§ 1.1. Экономико-математическая модель
- •§ 1.2. Примеры задач линейного программирования
- •По смыслу задачи переменные (1.2)
- •§ 1.3. Общая задача линейного программирования
- •Глава 2. Элементы линейной алгебры и геометрии выпуклых множеств
- •§ 2.3. Геометрический смысл решений неравенств, уравнений и их систем
- •Глава 4. Геометрический метод решения задач линейного программирования
- •Глава 5. Симплексный метод
- •§ 5.1. Геометрическая интерпретация симплексного метода
- •§ 5.2. Отыскание максимума линейной функции
- •§ 5.3. Отыскание минимума линейной функции
- •§ 5.4. Определение первоначального допустимого базисного решения
- •При ограничениях
- •§ 5.5. Особые случаи симплексного метода
- •I. Неединственность оптимального решения (альтернативный оптимум)
- •II. Проблема вырожденного базисного решения
- •III. Отсутствие конечного оптимума
- •§ 5.6. Симплексные таблицы
- •§ 5.7. Понятие об м-методе (методе искусственного базиса)
- •Глава 6. Двойственные задачи
- •§ 6.1. Экономическая интерпретация задачи, двойственной задаче об использовании ресурсов
- •§ 6.2. Взаимно двойственные задачи линейного программирования и их свойства
- •§ 6.3. Первая теорема двойственности
- •§ 6.4. Вторая теорема двойственности
- •§ 6.5. Объективно обусловленные оценки и их смысл
- •Глава 7. Транспортная задача
- •§ 7.1. Экономико-математическая модель транспортной задачи
- •§ 7.2. Нахождение первоначального базисного распределения поставок
- •§ 7.3. Критерий оптимальности базисного распределения поставок
- •§ 7.4. Распределительный метод решения транспортной задачи
- •§ 7.5. Открытая модель транспортной задачи
- •23.6. Альтернативный оптимум в транспортных задачах
- •23.7. Вырожденность в транспортных задачах
23.6. Альтернативный оптимум в транспортных задачах
Признаком наличия альтернативного оптимума в транспортной задаче является равенство нулю хотя бы одной из оценок свободных переменных в оптимальном решении (Xопт1).Сделав перераспределение грузов относительно клетки, имеющей Δij = 0, получим новое оптимальное решение (Хопт2), при этом значение целевой функции (транспортных расходов) не изменится. Если одна оценка свободных переменных равна нулю, то оптимальное решение находится в виде
где 0 ≤ t ≤ 1.
Рассмотрим конкретную задачу, имеющую альтернативный оптимум.
Пример 1. На трех складах имеется мука в количестве 60, 130 и 90 т, которая должна быть в течение месяца доставлена четырем хлебозаводам в количестве: 30, 80, 60, 110 т соответственно. Составить оптимальный план перевозок, имеющий минимальные транспортные расходы, если стоимость доставки 1 т муки на хлебозаводы задана матрицей
Решение. Составим распределительную таблицу в виде табл. 23.6.
По методу минимального тарифа найдем исходное решение. Определим потенциалы строк и столбцов. Найдем оценки свободных клеток:
Так как Δ12 = 4 > 0, то перераспределим грузы относительно клетки (1,2):
Занесем полученное перераспределение грузов в распределительную таблицу и вычислим потенциалы занятых и оценки свободных клеток (табл. 23.7).
Получим
Так как Δ33 = 0, то задача имеет альтернативный оптимум и одно из решений равно
Стоимость транспортных расходов составляет: L(Xопт1) = 1550 усл. ед.
Произведем перераспределение грузов относительно клетки (3,3):
Занесем в распределительную таблицу полученное перераспределение грузов, вычислим потенциалы занятых и оценки свободных клеток (табл. 23.8):
Так как Δ14 = 0, получили еще одно решение:
Стоимость транспортных расходов составит L(Хопт2) = 1550 усл. ед.
Данная задача имеет два оптимальных решения Хопт1 и Xопт2, общее решение находится по формуле
где 0 ≤ t ≤ 1.
Найдем элементы матрицы общего решения:
Итак,
Стоимость транспортных расходов составляет 1550 усл. ед.
23.7. Вырожденность в транспортных задачах
При решении транспортной задачи может оказаться, что число занятых клеток меньше, чем m + п - 1. В этом случае задача имеет вырожденное решение. Для возможного его исключения целесообразно поменять местами поставщиков и потребителей или ввести в свободную клетку с наименьшим тарифом нулевую поставку. Нуль помещают в такую клетку, чтобы в каждой строке и каждом столбце было не менее одной занятой клетки.
Рассмотрим вырожденность в транспортной задаче на примере.
Пример 2. Фирма осуществляет поставку бутылок на три завода, занимающиеся производством прохладительных напитков. Она имеет три склада, причем на складе 1 находится 6000 бутылок, на складе 2 — 3 000 бутылок и на складе 3 — 4 000 бутылок. Первому заводу требуется 4000 бутылок, второму заводу — 5 000 бутылок, третьему заводу — 1000 бутылок. Матрицей
задана стоимость перевозки одной бутылки от каждого склада к каждому заводу.
Как следует организовать доставку бутылок на заводы, чтобы стоимость перевозки была минимальной?
Решение. Запишем исходные данные в распределительную таблицу (табл. 23.9), найдем исходное опорное решение по методу минимального тарифа. Число заполненных клеток равно 5, т + п - 1 = 6, следовательно, задача является вырожденной.
Для исключения вырожденности необходимо в какую-то клетку ввести нулевую поставку. Такая клетка становится условно занятой, ее целесообразно определить при вычислении потенциалов занятых клеток, она должна иметь наименьший тариф по сравнению с другими клетками, которые могут быть условно занятыми.
Так, для нахождения потенциала и3 поместим нулевую поставку в клетку (3,2), после чего представляется возможным вычислить остальные потенциалы.
Оценки свободных клеток следующие:
Все оценки отрицательные, получили оптимальное решение:
Таким образом, со склада 1 целесообразно поставить 3000 бутылок второму и четвертому заводам, со склада 2 — 2000 бутылок второму заводу и 1000 бутылок третьему, со склада 3 — 4000 бутылок первому заводу, при этом стоимость транспортных расходов будет минимальной и составит 28 000 усл. ед.