- •Проектирование сварных конструкций
- •Глава II
- •§ 1. Сорта сталей и алюминиевых сплавов
- •§ 2. Сортамент
- •Глава III
- •Глава IV
- •§ 1. Принципы расчета строительных конструкций по предельному состоянию
- •§ 2. Принципы расчета машиностроительных конструкций по допускаемым напряжениям
- •§ 3. Расчетные сопротивления и допускаемые напряжения при расчете прочности сварных соединений в стальных конструкциях
- •§ 4. Допускаемые напряжения для сварных конструкции из алюминиевых сплавов
- •§ 5, Злентр0дуг0вые сварные соединения
- •§ 6. Сварные соединения, выполненные контактной сваркой
- •§ 7. Соединения при специальных методах сварни соединения при электрошлаковой сварке
- •§ 8. Соединения при сварне пластмасс
- •§ 9. Примеры расчета
- •§ 10. Комбинированные клепано-сварные соединения
- •§11. Клеено-сварные соединения
- •§ 12. Паяные соединения
- •§ 13. Соединения, работающие на изгиб и сложное сопротивление
- •§ 14. Расчет прочности сварных соединений по рекомендации международного института сварки (мис)
- •§ 15. Условные обозначения сварных швов
- •Глава V
- •§ 1. Общие соображения
- •§ 2. Распределение напряжений в стыковых швах
- •§ 3. Распределение напряжений в лобовых швах
- •§ 4. Распределение напряжений во фланговых швах
- •§ 5. Распределение напряжений в комбинированных соединениях с лобовым и фланговыми швами
- •§ 6. Распределение усилий в роликовых соединениях, сваренных контактным способом
- •§ 7. Распределение усилий в точечных соединениях, сваренных контактным способом
- •§ 8. Концентрация деформаций в зоне дефектов
- •Глава VI
- •§ 1. Деформации и напряжения при неравномерном нагреве и остывании
- •§ 2. Свойства металлов при высоких температурах. Распределение температур при сварке
- •§ 3. Образование деформаций, напряжений и перемещений при сварне
- •§ 4. Остаточные напряжения в сварных соединениях
- •§ 5. Деформации и перемещения в сварных соединениях и конструкциях
- •§ 6. Остаточные напряжения и перемещения, возникающие в элементах оболочек
- •§ 7. Экспериментальные методы
- •Глава VII
- •§ 1. Общие замечания
- •§ 2. Уменьшение остаточных напряжений
- •§ 3. Способы уменьшения сварочных деформаций и перемещений
- •§ 4. Особенности уменьшения напряжений и перемещений при сварке элементов тонкостенных оболочек
- •Глава VIII
- •§ 1. Образование в сварных соединениях горячих (кристаллизационных) трещин
- •§ 2. Образование в сварных соединениях холодных трещин
- •Глава IX
- •§ 1. Общие положения
- •§ 2. Прочность сварных соединений
- •§ 3. Повышение статической прочности
- •Глава X
- •§ 1. Прочность основного металла при переменных нагрузнах
- •§ 2. Прочность сварных соединений
- •§ 3. Усталостная прочность сварных соединений элементов больших толщин
- •§ 4, Усталостная прочность сварных соединений при контактной сварке
- •§ 5. Усталостная прочность сварных
- •§ 6. Методы повышения прочности сварных соединений при переменных нагрузнах
- •§ 7. Допускаемые напряжения при работе конструкций под переменными нагрузками
- •1 Аблица 10.12
- •Глава XI
- •§ 2. Причины хрупких разрушений сварных конструкций
- •§ 3. Прочность сварных соединений при ударе
- •§ 4. Предупреждение хрупких разрушений
- •Глава XII
- •§ 1. Понятие о конструктивной прочности
- •§ 2. Влияние схемы напряженного состояния
- •§ 3. Влияние концентраторов напряжений
- •§ 4. Влияние пониженной температуры
- •§ 5. Влияние пластической деформации и деформационного старения
- •§ 6. Пути повышения конструктивной прочности
- •§ 1. Рациональное проектирование и изготовление конструкций
- •§ 2. Выбор материалов для сварных конструкций
- •§ 3. Рациональное построение
- •§ 4. Сборочно-сварочные операции и проектирование приспособлений
- •Глава XIV
- •§ 1. Общие сведения о балках
- •§ 2. Схема расчета балон
- •§ 3. Определение расчетных усилий в балках методом линий влияния
- •§ 4. Расчет жесткости и прочности
- •§ 5. Общая устойчивость
- •§ 6. Местная устойчивость
- •§ 7. Ребра жесткости
- •§ 8. Работа на кручение
- •§ 9. Расчет с учетом пластических деформаций
- •§ 10. Сварные соединения
- •§ 11. Стыки
- •§ 12. Применение штампованных и гнутых профилей
- •§ 13. Применение алюминиевых сплавов
- •§ 14. Опорные части
- •§ 15. Результаты испытаний
- •§ 16. Примеры сварных нонструнций
- •§ 17. Пример расчета и конструирования балки
- •Глава XV
- •§ 1. Типы поперечных сечений
- •§ 2. Устойчивость стоек со сплошными поперечными сечениям1и
- •§ 3, Прочность и устойчивость стоек с составными поперечными сечениями
- •§ 4. Соединительные элементы
- •§ 5. Стыки
- •§ 6. Базы и оголовки
- •§ 7. Примеры стоек
- •Глава XVI
- •§ 1. Изготовление балок двутаврового сечения
- •§ 2. Пример проектирования оснастки
- •§ 3. Изготовление конструктивных элементов двутаврового сечения
- •§ 4. Изготовление балок коробчатого сечения
- •§ 5. Приемы выполнения стыков балок
- •Глава XVII
- •§ 1. Типы соединений элементов рамы
- •§ 2. Соединения балок в рамах с дополнительными усилениями
- •§ 3. Соединения балок со стойнами
- •§ 4. Точечные соединения рам, работающих на изгиб
- •§ 5. Сварные рамы и станины
- •§ 6. Рамы под двигатели
- •§ 7. Изготовление ран
- •Глава XVIII
- •§ 1. Типы ферм
- •§ 2. Определение нагрузок и усилий стержней
- •§ 3. Линии влияния усилий стержней
- •§ 4. Поперечные сечения стержней
- •§ 5. Сечения сжатых и растянутых поясов, раскосов и стоек
- •§ 6. Узлы ферм
- •§ 7. Специальные конструкции ферм
- •§ 9. Сварные легкие прутковые фермы
- •§ 10. Применение алюминиевых сплавов в сварных конструкциях ферм
- •§ 11. Пример расчета алюминиевой фермы
- •§ 12. Пример расчета стальной фермы
- •§ 13. Применение пайки
- •§ 14, Пример расчета нран0в0г0 моста*
- •§ 15. Изготовление решетчатых конструкций
- •Глава XIX
- •§ 1. Вертикальные цилиндрические резервуары
- •§ 2. Покрытия цилиндрических резервуаров
- •§ 3, Резервуары со сферическими днищами
- •§ 4. Сферические и каплевидные резервуары
- •§ 5. Цистерны
- •§ 6, Местные напряжения в листовых конструкциях
- •§ 7. Газгольдеры
- •§ 8. Применение алюминиевых сплавов для изготовления резервуаров и цистерн
- •§ 9. Конструкции металлургического и других комплексов
- •§ 10. Котлы и сосуды, работающие под давлением
- •§11. Трубы и трубопроводы
- •Глава XX
- •§ 1. Негабаритные емкости и сооружения
- •§ 2. Сосуды, работающие под давлением
- •§ 3. Изготовление сварных труб
- •§ 4. Сварка труб и трубопроводов
- •§ 5. Корпусные листовые конструкции
- •Глава XXI
- •§ 1. Типы сварных деталей машин
- •§ 2. Барабаны
- •§ 3. Корпуса редукторов
- •§ 4. Шестерни и шнивы
- •Глава XXII
- •§ 1. Детали тяжелого и энергетического машиностроения
- •§ 2. Детали овщего машиностроения
- •§ 3. Сварна деталей приборов
- •§ 2. Изготовление арматурных сварных нонструнций
- •§ 3. Сварка стыков рельсов
- •Глава XXIV
- •§ 1. Механизация транспортных операций
- •§ 2. Механизация заготовительных операции
- •§ 3. Механизация и автоматизация сборочно-сварочных операций
§ 3. Прочность сварных соединений при ударе
Хрупкость металлов наиболее сильно проявляется при ударных нагрузках. Поэтому большинство методой для оценки сопротивляемости сварных соединений хрупким разрушениям основано на применении удара. Распространено испытание металла шва и зон сварных соединений на ударную вязкость. Надрез располагается в зоне, где производится определение свойств металла. Применение сварочных проволок соответствующего химического состава, защитных инертных газов, флюсов и обмазок при электродуговой и электрошлаковой сварке позволяют практически получать наплавленный металл шва, не
255
а)
-fie:
rft:
U~X^$~~-&
"V
300
уступающий по ударной вязкости основному металлу, а нередко и превосходящий его. Таких результатов удается достигнуть при сварке иизкоуглеродистых, низколегированных и аустенитных сталей, а также специальных сталей и сплавов. Ударная вязкость швов колеблется при комнатных температурах в пределах от 8 до 25 кГ-м/см2.
Ударная вязкость околошовных зон зависит от химического состава и свойств основного металла, а также от термического
цикла сварки. Наиболее- распространенными случаями снижения ударной вязкости околошовных зон в сварных соединениях являются перегрев металла, вызывающий рост зерна, закалка и старение. Перегрев чаще наблюдается в электрошлаковых сварных соединениях и может вызвать весьма значительное понижение ударной вязкости. Восстановление ударной вязкости достигается применением закалки или нормализации сварного соединения. Для повышения пластических свойств металла в зонах закалки назначают отпуск сварных конструкций. Одновременно достигается снижение остаточных напряжений.. Сварные соединения и конструкции без значительных концентраторов напряжений хорошо сопротивляются ударным нагрузкам, в том числе и при отрицательных температурах, при условии достаточно высокого качества исходного основного металла и соответствующего технологического процесса сварки. Для оценки качества сварных соединений при низких температурах и ударных нагрузках разработа: мы различные специальные методы испытаний. В частности, на рис. 11-6, а представлен образец Института электросварки им. Е. О. Патона. Ребро образца состоит из двух частей, приваренных угловыми швами к целой пластине. Наличие узкой щели
ВСгпЗ
1
11-6. Зависимость напряжений, вызывающих хрупкие разрушения, от температуры:
а) образец для испытаний; б) результаты испытаний
256
в ребре приводит к концентрации напряжений, а процесс сварки создает ряд дополнительных неблагоприятных влияний, связанных с наличием концентратора. При растяжении до определенного напряжения и дополнительном ударе со стороны, противоположной ребру, образцы хрупко разрушались. Причем в зависимости от температуры и марки стали разрушения происходили при различных растягивающих напряжениях (рис. 11-6,6). Результаты испытаний указывают на существенную зависимость прочности сварных образцов при ударе от марки стали.
Различные испытания сварных образцов при ударе свидетельствуют о значительном влиянии состояния н свойств зоны, где ожидается начало разрушения, на прочность конструкции в целом. Если основной металл при температуре испытания имеет свойства, при которых возможны хрупкие и квазихрупкие формы его разрушения, то зона начала разрушения имеет решающее значение для прочности конструкции. Хрупкие локальные зоны, острые концентраторы, являясь очагами начала разрушений, резко понижают прочность сварных конструкций в таких условиях. При их отсутствии вызвать начало разрушения даже при ударных нагрузках удается лишь после значительных пластических деформаций металла.
Если основной металл при температуре испытания разрушается вязко, то отрицательное влияние хрупких зон и острых надрезов ослабевает. Начавшиеся разрушения, как правило, останавливаются, входя в вязкий основной металл.
В инженерной практике ударный характер приложения нагрузок учитывается путем введения в расчет различных динамических коэффициентов, устанавливаемых специальными испытаниями или на основе эксплуатации опытных конструкций. Такой метод расчета прочности весьма условный.
