
- •Владимир Николаевич Петров Юрий Избачков Информационные системы
- •Аннотация
- •Юрий Сергеевич Избачков, Владимир Николаевич Петров Информационные системы: Учебник для вузов Введение
- •Информационные системы
- •База данных
- •Case‑средства
- •Средства разработки
- •Для кого предназначена эта книга
- •Как составлена книга
- •Часть I. Анализ и проектирование информационных систем
- •Часть II. Delphi – система быстрой разработки приложений
- •Часть III. Выборка данных и отображение ее результатов
- •Часть IV. Компоновка приложения и управление проектом
- •Часть V. Технология com
- •Часть VI. Программирование для Интернета
- •Факторы, влияющие на развитие корпоративных информационных систем
- •Развитие методик управления предприятием
- •Развитие общих возможностей и производительности компьютерных систем
- •Развитие подходов к технической и программной реализации элементов информационных систем
- •Основные составляющие корпоративных информационных систем
- •Соотношение между составляющими информационной системы
- •Классификация информационных систем
- •Классификация по масштабу
- •Классификация по сфере применения
- •Классификация по способу организации
- •Области применения и примеры реализации информационных систем
- •Бухгалтерский учет
- •Управление финансовыми потоками
- •Управление складом, ассортиментом, закупками
- •Управление производственным процессом
- •Управление маркетингом
- •Документооборот
- •Оперативное управление предприятием
- •Предоставление информации о фирме
- •Требования, предъявляемые к информационным системам
- •Гибкость
- •Надежность
- •Эффективность
- •Безопасность
- •Глава 2 Жизненный цикл информационных систем
- •Общие сведения об управлении проектами
- •Понятие проекта
- •Классификация проектов
- •Основные фазы проектирования информационной системы
- •Концептуальная фаза
- •Подготовка технического предложения
- •Проектирование
- •Разработка
- •Ввод системы в эксплуатацию
- •Процессы, протекающие на протяжении жизненного цикла информационной системы
- •Основные процессы жизненного цикла
- •Разработка
- •Эксплуатация
- •Сопровождение
- •Вспомогательные процессы жизненного цикла
- •Организационные процессы
- •Структура жизненного цикла информационной системы
- •Начальная стадия
- •Стадия уточнения
- •Стадия конструирования
- •Стадия передачи в эксплуатацию
- •Модели жизненного цикла информационной системы
- •Каскадная модель жизненного цикла информационной системы
- •Основные этапы разработки по каскадной модели
- •Основные достоинства каскадной модели
- •Недостатки каскадной модели
- •Спиральная модель жизненного цикла
- •Итерации
- •Преимущества спиральной модели
- •Недостатки спиральной модели
- •Глава 3 Методология и технология разработки информационных систем
- •Методология rad
- •Основные особенности методологии rad
- •Объектно‑ориентированный подход
- •Визуальное программирование
- •Событийное программирование
- •Фазы жизненного цикла в рамках методологии rad
- •Фаза анализа и планирования требований
- •Фаза проектирования
- •Фаза построения
- •Фаза внедрения
- •Ограничения методологии rad
- •Профили открытых информационных систем
- •Понятие профиля информационной системы
- •Принципы формирования профиля информационной системы
- •Структура профилей информационных систем
- •Профиль прикладного программного обеспечения
- •Профиль среды информационной системы
- •Профиль защиты информации
- •Профиль инструментальных средств
- •Стандарты и методики
- •Виды стандартов
- •Методика cdm фирмы Oracle
- •Общая структура
- •Особенности методики cdm
- •Международный стандарт iso/iec 12207: 1995‑08‑01
- •Общая структура
- •Основные и вспомогательные процессы жизненного цикла
- •Особенности стандарта iso 12207
- •Универсальный язык моделирования
- •Предшественники uml
- •Структура uml
- •Глава 4 Реляционные базы данных
- •Общие сведения о базах данных
- •Основные функции систем управления базами данных
- •Непосредственное управление данными во внешней памяти
- •Управление буферами оперативной памяти
- •Управление транзакциями
- •Протоколирование
- •Поддержка языков баз данных
- •Эволюция систем управления базами данных
- •Субд первого поколения
- •Реляционные субд
- •Объектно‑ориентированные субд
- •Реляционная модель данных
- •Базовые понятия реляционной модели данных
- •Тип данных
- •Атрибуты, схема отношения, схема базы данных
- •Пустые значения
- •Ключи отношения
- •Связанные отношения
- •Внешние ключи отношения
- •Условия целостности данных
- •Типы связей между таблицами
- •Конец ознакомительного фрагмента.
Реляционные субд
Началом второго этапа в эволюции СУБД можно считать публикации в начале 70‑х годов ряда статей Э. Кодда (Coad), в которых выдвигались, по сути, революционные идеи, существенно изменившие устоявшиеся представления о базах данных.
Будучи математиком по образованию, Кодд предложил использовать для обработки данных аппарат теории множеств (объединение, пересечение, разность, декартово произведение). Он показал, что любое представление данных сводится к совокупности двухмерных таблиц особого вида, известного в математике как отношение (по‑английски – relationship, отсюда и название – реляционные базы данных).
Одна из главных идей Кодда заключалась в том, что связь между данными должна устанавливаться в соответствии с их внутренними логическими взаимоотношениями.
Примечание.
В СУБД первого поколения для связи записей из разных файлов использовались физические указатели или адреса на диске. Это означало, что в том случае, когда в разных файлах хранится логически связанная информация, а физическая связь между этими файлами отсутствует, то для получения выборки (извлечения информации) из такой базы данных необходимо использовать низкоуровневые средства работы с файлами. В случае же реляционной базы данных сама СУБД поддерживает извлечение информации из базы данных на основе логических связей, и при работе с базой данных нет необходимости напрямую программировать обращения к файлам. Естественно, это существенно упрощает работу с базами данных.
Второй важный принцип, предложенный Коддом, заключается в том, что в реляционных системах одной командой могут обрабатываться целые файлы данных, в то время как в ранних СУБД одной командой обрабатывалась только одна запись. Реализация этого принципа существенно повысила эффективность программирования баз данных.
Реализация реляционных принципов в СУБД сделала возможным разработку простых языков запросов, вполне доступных пользователям, не являющимся специалистами в области программирования. Таким образом, благодаря снижению требований к квалификации существенно расширился круг пользователей баз данных.
Примечание.
На начальном этапе развития реляционных баз данных было разработано несколько языков запросов, среди которых наиболее известны QBE (Query by Example – запрос по образцу), Quel (Query Language – язык запросов) и SQL (Structured Query Language – структурированный язык запросов). Среди этих языков на сегодняшний день наибольшее распространение имеет SQL, который в 1986 г. был принят институтом ANSI (American National Standards Institute – Американский национальный институт стандартов) в качестве стандарта языков реляционных баз данных. Последнее обновление этого стандарта было принято в 1992 г., и язык запросов, соответствующий этому стандарту, обычно обозначается как SQL‑92.
Сейчас реляционные базы данных получили очень широкое распространение и фактически их можно рассматривать как стандарт СУБД для современных информационных систем.
Объектно‑ориентированные субд
Несмотря на большую популярность реляционных СУБД, развитие технологии управления данными на них не остановилось. Следующим этапом этого развития стало появление объектно‑ориентированных баз данных, для которых характерны объектно‑ориентированный подход, распределенность данных, наличие активного сервера баз данных, языки программирования четвертого поколения, фрагментация и параллельная обработки запросов, технологии тиражирования данных, многопоточная архитектура и другие революционные достижения в области обработки данных.
Объектно‑ориентированный подход имеет ряд преимуществ для разработчика, из которых можно отметить следующие:
• возможность разбить систему на совокупность независимых сущностей (объектов) и провести их строгую независимую спецификацию;
• простота эволюции системы за счет таких элементов объектного подхода как наследование и полиморфизм;
• возможность объектного моделирования системы, позволяющего проследить поведение реальных сущностей предметной области уже на ранних стадиях разработки.
Объектная модель данных более близка сущностям реального мира. Объекты можно сохранить и использовать непосредственно, не раскладывая по таблицам. Типы данных определяются разработчиком и не ограничены набором предопределенных типов.
При занесении сложного объекта в реляционную базу обязательна процедура декомпозиции его данных для того, чтобы разместить их в таблицах. При чтении объекта из реляционной базы он собирается из отдельных элементов и только затем может использоваться. В объектных же СУБД данные объекта, а также методы изменения этих данных помещаются в хранилище как единое целое.
Использование объектной модели представления данных (и, соответственно, объектно‑ориентированной СУБД) наиболее привлекательно для информационных систем корпоративного уровня, разработка которых ведется методами объектного проектирования.
Примечание.
Несмотря на все достоинства объектно‑ориентированных СУБД, их использование далеко не всегда оправданно. Нередко декомпозиция данных объекта не вызывает никаких проблем и вполне логична. В этом случае применение реляционной модели может быть более эффективным. Кроме того, ведущие производители реляционных СУБД IBM и Oracle доработали свои продукты (DB2 и Oracle соответственно), добавив объектную надстройку над реляционным ядром системы. Таким образом, работая с этими СУБД, можно использовать ту или иную модель данных в зависимости от конкретной ситуации. Вероятно, что в обозримом будущем рынок корпоративных систем пока останется за гибридными объектно‑реляционными СУБД.