
- •Содержание
- •7.1.Переменный ток
- •1. Электростатика. Электрическое поле в вакууме
- •1.1. Электрические заряды и их взаимодействие
- •1.2. Электризация тел
- •1.3. Закон Кулона. Системы единиц
- •1.4. Близкодействие и действие на расстоянии. Электрическое поле
- •1.5. Напряженность электрического поля
- •1.6. Электрическое поле диполя
- •1.7. Теорема Гаусса
- •1.8. Потенциал электрического поля
- •1.9. Эквипотенциальные поверхности
- •1.10. Связь между напряженностью и разностью потенциалов
- •2. Электрическое поле в веществе
- •2.1. Проводники в электростатическом поле
- •2.2. Проводники во внешнем электрическом поле
- •2.3. Емкость проводников
- •2.4. Конденсаторы. Емкость конденсаторов
- •2.5. Соединение конденсаторов
- •2.6. Энергия плоского конденсатора
- •2.7. Диэлектрики в электростатическом поле
- •2.8. Молекулярная картина поляризации диэлектриков
- •2.9. Влияние поляризации на электрическое поле
- •3. Постоянный электрический ток
- •3.1. Постоянный электрический ток. Сила тока. Плотность тока
- •3.2. Электродвижущая сила
- •3.3. Закон Ома
- •3.4. Правила Кирхгофа
- •3.5 Последовательное и параллельное соединение проводников
- •3.6 Последовательное и параллельное соединение источников тока
- •3.7. Закон Джоуля–Ленца
- •4. Магнитное поле в вакууме
- •4.1. Магнитное поле
- •4.2. Закон Био–Савара
- •4.3. Теорема о циркуляции
- •4.4. Сила Ампера
- •4.5. Сила Лоренца
- •4.6. Контур с током в магнитном поле
- •4.7. Теорема Гаусса для магнитных полей
- •4.8. Механическая работа в магнитном поле
- •5. Магнитное поле в веществе
- •5.1. Магнитная проницаемость
- •5.2. Виды магнетиков
- •6. Электромагнитная индукция
- •6.1. Явление электромагнитной индукции
- •6.2. Универсальный закон электромагнитной индукции
- •6.3 Явление самоиндукции
- •6.4. Энергия магнитного поля
- •6.5. Взаимная индукция
- •6.6. Примеры на применение явления электромагнитной индукции
- •7. Переменный ток
- •7.1. Переменный ток
- •7.2. Квазистационарные токи
- •7.3. Сопротивление в цепи переменного тока
- •7.4. Индуктивность в цепи переменного тока
- •7.5. Цепь с емкостью
- •7.6. Цепь переменного тока, содержащая активное сопротивление, индуктивность и емкость
- •7.7. Работа и мощность переменного тока
- •7.8. Эффективные значения тока и напряжения
- •7.9. Резонансы в цепи переменного тока
6.3 Явление самоиндукции
Важным частным случаем явления электромагнитной индукции называют явление самоиндукции. В этом случае изменяющийся магнитный поток через замкнутый контур создается переменным током в самом контуре.
Рассмотрим тонкий замкнутый проводник, по которому течет ток силой . Этот ток создает пронизывающий контур магнитный поток. В соответствии с законом Био–Савара магнитная индукция пропорциональна силе тока, вызвавшего поле. Отсюда вытекает, что ток и создаваемый им магнитный поток пропорциональны друг другу:
.
Коэффициент пропорциональности называется индуктивностью контура или коэффициентом самоиндукции. Линейная зависимость от наблюдается только в отсутствие ферромагнетиков, в противном случае будет зависеть от . Индуктивность зависит от геометрии контура (то есть его формы и размеров), а также от магнитных свойств окружающей среды. Если виток имеет жесткую форму и вблизи него нет ферромагнетиков, индуктивность является постоянной величиной.
За единицу индуктивности в системе единиц СИ принимается индуктивность такого проводника, у которого при силе тока в нем в 1 А возникает сцепленный с ним поток, равный 1 Вб. Эту единицу называют генри (Гн):
.
Для примера вычислим индуктивность
идеального соленоида, пренебрегая при
этом краевыми эффектами. Пусть
–
длина соленоида,
–
число витков на единицу длины,
–
площадь одного витка. Индукция магнитного
поля внутри соленоида равна
.
Тогда магнитный поток, пронизывающий
соленоид, будет равен
,
отсюда
.
Если ток в проводнике меняется, то
меняется и магнитный поток, пронизывающий
контур, вследствие чего в витке
индуцируется электродвижущая сила
самоиндукции
.
Если при этом индуктивность контура L
остается неизменной, то электродвижущая
сила самоиндукции, согласно основному
закону электромагнитной индукции, имеет
вид
|
|
(6.3) |
Знак минус в этой формуле обусловлен правилом Ленца.
В рассматриваемом случае причиной, вызывающей электродвижущую силу самоиндукции, является изменение тока в цепи. Если ток в цепи возрастает, то возрастает и индукция магнитного поля, которое он создает, а следовательно, возрастает магнитный поток через контур. Поэтому, согласно правилу Ленца, ток самоиндукции должен быть направлен так, чтобы его магнитное поле препятствовало такому изменению магнитного потока, то есть навстречу основному току. И наоборот, при уменьшении силы тока в цепи направление индукционного тока будет совпадать с направлением основного тока.
|
|


Электродвижущая сила самоиндукции,
возникающая при выключении тока, может
быть велика и поэтому опасна. Индуктивность
большого электромагнита, применяемого
для исследований, может составлять,
например, 10 Гн. Ток в катушке может
достигать 100 А. Если ток в цепи
прервать с помощью выключателя или если
будет случайный разрыв в цепи, то
возникнет электродвижущая сила, равная
,
даже если
,
.
В действительности это время гораздо
меньше, и поэтому электродвижущая сила
самоиндукции значительно больше.
Возникающая при этом большая разность
потенциалов, сосредоточенная на
выключателе или разрыве, может привести
к нагреву и плавлению контактов. Этим
объясняется опасность резкого отключения
от силовой сети мощных электродвигателей,
обмотки которых обладают большой
индуктивностью. Их отключают, плавно
уменьшая ток с помощью реостатов.