
- •Содержание
- •5.1. Неинерциальные системы отсчета
- •Введение
- •1. Кинематика материальной точки
- •1.1. Системы отсчета
- •1.2. Материальная точка
- •1.3. Описание движения
- •1.4. Относительность перемещений и скоростей
- •1.5. Кинематика движения точки по окружности
- •2. Динамика материальной точки и системы материальных точек
- •2.1. Первый закон ньютона. Инерциальные системы отсчета
- •2.2. Сила. Масса тела
- •2.3. Второй закон ньютона
- •2.4. Типы сил
- •2.5. Роль начальных условий
- •2.6. Третий закон ньютона
- •2.6. Третий закон ньютона
- •2.7. Второй закон ньютона для системы материальных точек. Закон сохранения импульса
- •2.8. Теорема о движении центра масс системы материальных точек
- •2.9. Принцип относительности галилея. Преобразования галилея
- •3. Законы сохранения
- •3.1. Закон сохранения импульса
- •3.2. Движение тел с переменной массой
- •3.3. Работа и энергия
- •3.4. Энергия
- •3.5. Кинетическая энергия
- •3.6. Примеры на вычисление работы
- •3.7. Потенциальные и непотенциальные силы
- •3.8. Потенциальная энергия частицы в поле
- •3.9. Закон сохранения полной механической энергии частицы
- •3.10. Силы и потенциальная энергия
- •3.11. Одномерное движение частицы
- •4. Динамика твердого тела
- •4.1. Вращательное движение твердого тела
- •4.2. Закон сохранения момента импульса
- •4.3. Механическое равновесие
- •4.4. Кинетическая энергия вращательного движения твердого тела
- •5. Неинерциальные системы отсчета
- •5.1. Неинерциальные системы отсчета
- •5.2. Силы инерции
- •5.3. Нахождение сил инерции
- •5.4. Вращающиеся системы отсчета
- •5.5. Сила кариолиса
- •6. Гидродинамика
- •6.1. Кинематическое описание движения жидкости
- •6.2. Уравнение неразрывности
- •6.3. Стационарное движение идеальной жидкости. Уравнение бернулли
- •6.4. Формула торричелли
- •6.5. Реакция вытекающей струи
- •6.6. Движение тел в жидкостях и газах
- •6.7. Эффект магнуса
- •7. Гармонические, затухающие, вынужденные колебания. Резонанс
- •7.1. Колебательное движение
- •7.2. Гармонические колебания
- •7.3. Энергия гармонического осциллятора
- •7.4. Векторная диаграмма и сложение колебаний
- •7.5. Затухающие колебания
- •7.6. Вынужденные колебания
- •7.7. Резонанс
- •7.8. Автоколебания
- •8. Упругие волны
- •8.1. Образование волн
- •8.2. Уравнение плоской упругой волны
- •8.3. Энергия, переносимая упругой волной
- •8.4. Эффекты сложения волн. Стоячие упругие волны
- •8.5. Звуковые волны
2. Динамика материальной точки и системы материальных точек
|
|
«Ньютон был первым, кто попытался сформулировать элементарные законы, которые определяют временной ход широкого класса процессов в природе с высокой степенью полноты и точности, и оказал своими трудами глубокое и сильное влияние на всё мировоззрение в целом. Самой судьбой Ньютон был поставлен на поворотном пункте умственного развития человечества». А. Эйнштейн |
|
Выдающийся английский учёный, заложивший основы современного естествознания, создатель классической физики, член Лондонского королевского общества и его президент с 1703г. Работы Ньютона относятся к механике, оптике, астрономии, математике. В двадцать с небольшим лет Ньютон сумел заложить фундамент почти для всего существенного, что кем когда-либо было сделано.
Ньютону было свойственно исключительное трудолюбие. Отрешившись от всего, что происходит вокруг, порой без сна и отдыха, он трудился с невероятной интенсивностью. Ему понадобилось всего 18 месяцев, чтобы завершить большую часть одной из самых выдающихся книг в истории науки «Математические начала натуральной философии», которую теперь обычно называют просто «Начала». Это сочинение было написано в 1687 г. Именно в «Началах» Ньютон сформулировал закон всемирного тяготения, заложил основы классической механики и сформулировал её основные законы. Он одним из первых построил теорию движения небесных тел, создав, таким образом, основы небесной механики. Много лет спустя А. Эйнштейн, обращаясь к Ньютону, писал: «Прости меня, Ньютон: ты нашёл единственный путь, возможный в твоё время для человека величайшей научной творческой способности и силы мысли. Понятия, созданные тобой, и сейчас остаются ведущими в нашем физическом мышлении, хотя мы теперь и знаем, что если будем стремиться к более глубокому пониманию взаимосвязей, то мы должны будем заменить эти понятия другими, стоящими дальше от сферы непосредственного опыта».
Кинематика дает описание движения, не задавая вопроса о том, почему тело движется именно так, а не иначе. Динамика изучает движение тел в связи с причинами, которые обусловливают тот или иной характер движения. С точки зрения кинематики все системы отсчета равноправны, то есть выбор любой из них допустим для описания движения. Иначе обстоит дело в динамике – разделе механики, изучающем движение, основываясь на анализе его причин.
В основе классической механики лежат три закона динамики, сформулированные Ньютоном. Законы Ньютона, как и все остальные физические законы, возникли в результате обобщения большого количества опытных фактов. Правильность их подтверждается согласием с опытом тех следствий, которые из них вытекают.
2.1. Первый закон ньютона. Инерциальные системы отсчета
|
На рисунке представлен фрагмент игры в хоккей. В случае малого трения, обеспечиваемого гладкой поверхностью льда, брошенная шайба движется равномерно прямолинейно в течение достаточно длительного промежутка времени. Фотография взята с сайта http://www.kolanpp.rul |
Первый закон Ньютона формулируется следующим образом: тело, неподверженное внешним воздействиям, либо находится в покое, либо движется прямолинейно и равномерно. Такое тело называется свободным, а его движение – свободным движением или движением по инерции. Свойство тела сохранять состояние покоя или равномерного прямолинейного движения при отсутствии воздействия на него других тел называется инерцией. Поэтому первый закон Ньютона называют законом инерции. Свободных тел, строго говоря, не существует. Однако естественно предположить, что чем дальше частица находится от других материальных объектов, тем меньшее воздействие они на нее оказывают. Представив себе, что эти воздействия уменьшаются, мы и приходим в пределе к представлению о свободном теле и свободном движении.
Экспериментально проверить предположение о характере движения свободной частицы невозможно, поскольку нельзя абсолютно достоверно установить факт отсутствия взаимодействия. Можно лишь с определенной степенью точности смоделировать данную ситуацию, используя экспериментальный факт уменьшения взаимодействия между удаленными телами. Обобщение ряда экспериментальных фактов, а также совпадение вытекающих из закона следствий с опытными данными доказывают его справедливость. При движении тело тем дольше сохраняет свою скорость, чем слабее на него действуют другие тела; например, скользящий по поверхности камень тем дольше движется, чем ровнее эта поверхность, то есть чем меньше воздействие на него этой поверхности.
Пример
Механическое движение относительно, и его характер зависит от системы отсчета. В кинематике выбор системы отсчета не был существенным. Не так обстоит дело в динамике. Если в какой-либо системе отсчета тело движется прямолинейно и равномерно, то в системе отсчета, движущейся относительно первой ускоренно, этого уже не будет. Отсюда следует, что закон инерции не может быть справедливым во всех системах отсчета. Классическая механика постулирует, что существует система отсчета, в которой все свободные тела движутся прямолинейно и равномерно. Такая система отсчета называется инерциальной системой отсчета (ИСО). Содержание закона инерции, в сущности, сводится к утверждению, что существуют такие системы отсчета, в которых тело, не подвергнутое внешним воздействиям, движется равномерно и прямолинейно или покоится.
|
Траектории движения астрономических объектов Солнечной системы в гелиоцентрической системе отсчета |
Установить, какие системы отсчета являются инерциальными, а какие – неинерциальными, можно только опытным путем. Допустим, например, что речь идет о движении звезд и других астрономических объектов в доступной нашему наблюдению части Вселенной. Выберем систему отсчета, в которой Земля считается неподвижной (такую систему мы будем называть земной). Будет ли она инерциальной?
|
Следовательно, для решения поставленной задачи надо проверить на инерциальность другие системы отсчета. Выберем в качестве тела отсчета Солнце. Такая система отсчета называется гелиоцентрической системой отсчета, или системой Коперника. Координатными осями связанной с ней системы координат являются прямые, направленные на три удаленные звезды, не лежащие в одной плоскости (рис. 2.1).
Таким образом, при изучении движений, происходящих в масштабе нашей планетной системы, а также всякой другой системы, размеры которой малы по сравнению с расстоянием до тех трех звезд, которые в системе Коперника выбраны в качестве опорных, система Коперника практически является инерциальной системой отсчета.
Пример
Неинерциальность земной системы отсчета объясняется тем, что Земля вращается вокруг собственной оси и вокруг Солнца, то есть движется ускоренно относительно системы Коперника. Так как оба эти вращения происходят медленно, то по отношению к громадному кругу явлений земная система ведет себя практически как инерциальная система. Вот почему установление основных законов динамики можно начать с изучения движения тел относительно Земли, отвлекаясь от ее вращения, то есть принять Землю за приблизительно ИСО.