Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Физика. Учебник. Механика. И. Н. Анохина, В. Ф....doc
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
5.1 Mб
Скачать

8.2. Уравнение плоской упругой волны

Для упругих волн уравнение волны представляет собой выражение, которое задает смещение  колеблющейся частицы как функцию координат равновесного положения частицы и времени. Пусть волна распространяется в направлении оси X, тогда

.

Эта функция должна быть периодической как относительно времени t, так и относительно координаты . Периодичность во времени вытекает из того, что  описывает колебания частицы с координатой . Периодичность по координатам следует из того, что точки, отстоящие друг от друга на расстоянии, равном длине волны, колеблются одинаковым образом.

Найдем вид функции  в случае плоской волны, предполагая, что колебания носят гармонический характер. Пусть колебания точек, лежащих в плоскости , имеют вид:

.

Найдем вид колебаний точек в плоскости, соответствующей произвольному значению . Для того, чтобы пройти путь от плоскости  до этой плоскости, волне требуется время  (  – скорость распространения волны) (рис. 8.3). Следовательно, колебания частиц, лежащих в плоскости , будут отставать по времени на  от колебаний частиц в плоскости , то есть будут иметь вид:

,

(8.1)

где  – амплитуда волны. Начальная фаза волны  определяется выбором начала отсчета  и . Зависимость фазы рассматриваемой волны и от времени, и от пространственных координат означает, что каждое данное значение фазы распространяется в пространстве.

Волна, распространяющаяся в противоположном направлении, описывается уравнением:

.

В физике обычно используют обозначение . Величину  называют волновым числом. Используя это обозначение, уравнение плоской волны, распространяющейся в положительном направлении оси , можно записать в виде:

.

(8.2)

Это уравнение монохроматической волны, распространяющейся со скоростью  в положительном направлении оси X. Различные точки волны в момент времени  имеют разные смещения. Но ряд точек, отстоящих на расстояние  одна от другой, в любой момент времени смещены одинаково (так как аргументы косинусов в уравнении (8.2) отличаются на  и, следовательно, их значения равны). Это расстояние и есть длина волны . Она равна пути, который проходит волна за один период колебаний частиц среды.

Скорость смещения элементов среды равна производной от смещения частицы по времени:

.

Таким образом, скорость смещения элементов среды меняется по тому же закону, что и само смещение, но со сдвигом по фазе на : скорость достигает максимума, когда смещение падает до нуля. Введенная выше скорость  описывает распространение только бесконечной монохроматической волны. Она определяет скорость перемещения ее фазы и называется фазовой скоростью.

Все приведенные рассуждения относятся к распространению волн в непоглощающей среде, то есть в среде, в которой механическая энергия не переходит в другие виды энергии.

Замечание

При выводе соотношения  мы полагали, что амплитуда колебаний не зависит от координаты . Для плоских волн это справедливо, когда энергия волны не поглощается средой. При распространении же в поглощающей энергию среде наблюдается затухание волны, причем, как показывает опыт, в однородной среде затухание происходит по экспоненциальному закону:

и, соответственно, уравнение плоской волны имеет следующий вид:

.